Vertebrate glycoproteins and glycolipids are synthesized in complex biosynthetic pathways localized predominantly within membrane compartments of the secretory pathway. The enzymes that catalyze these reactions are exquisitely specific, yet few have been extensively characterized due to challenges associated with their recombinant expression as functional products. We used a modular approach to create an expression vector library encoding all known human glycosyltransferases, glycoside hydrolases, sulfotransferases, and other glycan modifying enzymes. We then expressed the enzymes as secreted catalytic domain fusion proteins in mammalian and insect cell hosts, purified and characterized a subset of the enzymes, and determined the structure of one, the sialyltransferase ST6GALNAC2. Many enzymes were produced at high yields and similar levels in both hosts, but individual protein expression levels varied widely. This expression vector library will be a transformative resource for recombinant enzyme production, broadly enabling structure-function studies and expanding applications of these enzymes in glycochemistry and glycobiology.
Resveratrol, a phytoallexin, has recently been reported to slow aging by acting as a sirtuin activator. Resveratrol also has a wide range of pharmacological effects on adipocytes. In this study, we investigated the effects of resveratrol on adipogenesis and apoptosis using 3T3-L1 cells. In mature adipocytes, 100 and 200 microM resveratrol decreased cell viability dose-dependently by 23 +/- 2.7%, and 75.3 +/- 2.8% (p < 0.0001), respectively, after 48 h treatment, and 100 microM resveratrol increased apoptosis by 76 +/- 8.7% (p < 0.0001). Resveratrol at 25 and 50 microM decreased lipid accumulation in maturing preadipocytes significantly by 43 +/- 1.27% and 94.3 +/- 0.3% (p < 0.0001) and decreased cell viability by 25 +/- 1.3% and 70.4 +/- 1.6% (p < 0.0001), respectively. In order to understand the anti-adipogenic effects of resveratrol, maturing 3T3-L1 preadipocytes were treated with 25 microM resveratrol and the change in the expression of several adipogenic transcription factors and enzymes was investigated using real-time RT-PCR. Resveratrol down-regulated the expression of PPAR gamma, C/EBP alpha, SREBP-1c, FAS, HSL, LPL and up-regulated the expression of genes regulating mitochondrial activity (SIRT3, UCP1 and Mfn2). These results indicate that resveratrol may alter fat mass by directly affecting cell viability and adipogenesis in maturing preadipocytes and inducing apoptosis in adipocytes and thus may have applications for the treatment of obesity.
Contemporary chemoenzymatic approaches can provide highly complex multi-antennary
N
-linked glycans. These procedures are, however, very demanding and typically involve as many as 100 chemical steps to prepare advanced intermediates that can be diversified by glycosyltransferases in a branch selective manner to give asymmetrical structures commonly found in Nature. Only highly specialized laboratories can perform such syntheses, which greatly hampers progress in glycoscience. Here we describe a biomimetic approach in which a readily available bi-antennary glycopeptide can be converted in 10 or fewer chemical and enzymatic steps into multi-antennary
N
-glycans that at each arm can be uniquely extended by glycosyltransferases to give access to highly complex asymmetrically branched
N
-glycans. A key feature of our approach is the installation of additional branching points using recombinant MGAT4 and MGAT5 in combination with unnatural sugar donors. At an appropriate point in the enzymatic synthesis, the unnatural monosaccharides can be converted into their natural counterpart allowing each arm to be elaborated into a unique appendage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.