Our earlier work on single-tube airbreathing pulse detonation engines (PDEs) is extended to explore the chamber dynamics and propulsive performance of multitube PDEs with repetitive operations. Detailed flow evolution in the entire chamber for two different configurations is examined over a broad range of operating parameters, and loss mechanisms are quantified. Emphasis is placed on the interactions between detonation tubes and their collective influence on the nozzle flowfield. The benefits of precompression of refilled fresh reactants by shock waves originating from other tubes are demonstrated. Compared with single-tube designs, multitube PDEs improve propulsive performance, reduce axial-flow oscillation, and offer a wider operation range in terms of valve timing. They can, however, cause thrust variation in the transverse direction. The convergent part of the nozzle helps preserve the chamber pressure and consequently improve the engine performance. The free volume between the detonation tubes and the common nozzle might render in performance degradation because of the existence of complicated shock structures and recirculating flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.