The myogenic capacity of myoblasts decreases in skeletal muscle with age. In addition to environmental factors, intrinsic factors are important for maintaining the regenerative potential of muscle progenitor cells, but their identities are largely unknown. Here, comparative analysis of microRNA (miRNA) expression profiles in young and old myoblasts uncovered miR-431 as a novel miRNA showing markedly reduced abundance in aged myoblasts. Importantly, elevating miR-431 improved the myogenic capacity of old myoblasts, while inhibiting endogenous miR-431 lowered myogenesis. Bioinformatic and biochemical analyses revealed that miR-431 directly interacted with the 3 ′ untranslated region (UTR) of Smad4 mRNA, which encodes one of the downstream effectors of TGF-β signaling. In keeping with the low levels of miR-431 in old myoblasts, SMAD4 levels increased in this myoblast population. Interestingly, in an in vivo model of muscle regeneration following cardiotoxin injury, ectopic miR-431 injection greatly improved muscle regeneration and reduced SMAD4 levels. Consistent with the finding that the mouse miR-431 seed sequence in the Smad4 3 ′ UTR is conserved in the human SMAD4 3 ′ UTR, inhibition of miR-431 also repressed the myogenic capacity of human skeletal myoblasts. Taken together, our results suggest that the age-associated miR-431 plays a key role in maintaining the myogenic ability of skeletal muscle with age.
Sarcopenia is a gradual loss of skeletal muscle mass and function with aging. Given that sarcopenia has been recognized as a disease entity, effective molecular biomarkers for early diagnosis are required. We recruited 46 normal subjects and 50 patients with moderate sarcopenia aged 60 years and older. Sarcopenia was clinically identified on the basis of the appendicular skeletal muscle index by applying cutoff values derived from the Asian Working Group for Sarcopenia. The serum levels of 21 potential biomarkers were analyzed and statistically examined. Interleukin 6, secreted protein acidic and rich in cysteine, macrophage migration inhibitory factor, and insulin-like growth factor 1 levels differed significantly between the normal and sarcopenia groups. However, in each case, the area under the receiver operating characteristics curve (AUC) was <0.7. Subsequent combination of the measurements of these biomarkers into a single risk score based on logistic regression coefficients enhanced the accuracy of diagnosis, yielding an AUC value of 0.763. The best cutoff value of 1.529 had 70.0% sensitivity and 78.3% specificity (95% CI = 2.80–21.69, p < 0.0001). Combined use of the selected biomarkers provides higher diagnostic accuracy than individual biomarkers, and may be effectively utilized for early diagnosis and prognosis of sarcopenia.
Sarcopenia is characterized by decreased skeletal muscle mass and function with age. Aged muscles have altered lipid compositions; however, the role and regulation of lipids are unknown. Here we report that FABP3 is upregulated in aged skeletal muscles, disrupting homeostasis via lipid remodeling. Lipidomic analyses reveal that FABP3 overexpression in young muscles alters the membrane lipid composition to that of aged muscle by decreasing polyunsaturated phospholipid acyl chains, while increasing sphingomyelin and lysophosphatidylcholine. FABP3-dependent membrane lipid remodeling causes ER stress via the PERK-eIF2α pathway and inhibits protein synthesis, limiting muscle recovery after immobilization. FABP3 knockdown induces a young-like lipid composition in aged muscles, reduces ER stress, and improves protein synthesis and muscle recovery. Further, FABP3 reduces membrane fluidity and knockdown increases fluidity in vitro, potentially causing ER stress. Therefore, FABP3 drives membrane lipid composition-mediated ER stress to regulate muscle homeostasis during aging and is a valuable target for sarcopenia.
Aging is associated with a progressive loss of skeletal muscular function that often leads to progressive disability and loss of independence. Although muscle aging is well documented, the molecular mechanisms of this condition still remain unclear. To gain greater insight into the changes associated with aging of skeletal muscle, we performed quantitative proteomic analyses on young (6 months) and aged (27 months) mouse gastrocnemius muscles using mTRAQ stable isotope mass tags. We identified and quantified a total of 4585 peptides corresponding to 236 proteins (protein probability >0.9). Among them, 33 proteins were more than 1.5-fold upregulated and 20 proteins were more than 1.5-fold downregulated in aged muscle compared with young muscle. An ontological analysis revealed that differentially expressed proteins belonged to distinct functional groups, including ion homeostasis, energy metabolism, protein turnover, and Ca(2+) signaling. Identified proteins included aralar1, β-enolase, fatty acid-binding protein 3, 3-hydroxyacyl-CoA dehydrogenase (Hadh), F-box protein 22, F-box, and leucine-rich repeat protein 18, voltage-dependent L-type calcium channel subunit beta-1, ryanodine receptor (RyR), and calsequestrin. Ectopic expression of calsequestrin in C2C12 myoblast resulted in decreased activity of nuclear factor of activated T-cells and increased levels of atrogin-1 and MuRF1 E3 ligase, suggesting that these differentially expressed proteins are involved in muscle aging.
Background:In vitro studies have reported reversible calsequestrin polymerization and depolymerization. Results: Live cell imaging analysis revealed Ca 2ϩ -dependent decondensation of calsequestrin speckles, consistent with in vitro microscopic data. Conclusion: Calsequestrin depolymerization by calcium depletion requires coexistence of junctin. Significance: The role of calsequestrin in intracellular calcium homeostasis was explored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.