Autophagy is one of the survival processes of cancer cells, especially in stressful conditions such as starvation, hypoxia and chemotherapeutic agents. However, its roles in tumor survival have not yet been fully elucidated. Here, we found for the first time that JAK2/STAT3 was activated in HeLa cells when they were starved or treated with rapamycin. STAT3 activation was associated with autophagic processes, because it was completely inhibited by 3-methyladenine, partially inhibited by knockdown of molecules associated with autophagic processes and blocked by antioxidants, DPI, a Nox inhibitor and knockdown of p22 phox, indicating that ROS generated by Nox that was activated during autophagic processes activated JAK2/STAT3 pathway. Activated STAT3 directly bound to IL6 promoter and increased IL6 mRNA and protein secretion. Finally, the conditioned media, which included IL6, from starved HeLa cells promoted cancer cell survival in both normal and starved conditions, confirmed by clonogenic, proliferation and cell death assays. These data together indicate that the autophagic process in cancer cells can contribute to their survival by JAk2/STAT3 activation and subsequent secretion of growth factors.
MYCN amplification strongly correlates with unfavorable outcomes in patients with neuroblastoma. The aim of this study was to investigate the role of MYCN in neuroblastoma cell differentiation and apoptosis. We used the technique of RNA interference to inhibit MYCN gene expression in neuroblastoma cells with variable expression of MYCN. Our results showed that inhibition of MYCN gene expression in MYCN amplified cells induced apoptosis and suppressed cell growth; neuronal differentiation also occurred after MYCN gene silencing. Moreover, N-myc downregulation was associated with decreased Bcl-xL protein levels and caspase-3 activation. These data show that small interfering RNA directed to MYCN, which plays a crucial role in neuroblastoma cell survival, may provide a potential novel therapeutic option for aggressive neuroblastomas.
Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is a trophic factor for highly vascular neuroblastomas; its mechanisms of action in vivo are unknown. We sought to determine the effects of BBS on the growth of neuroblastoma xenografts and on angiogenesis. BBS significantly increased the growth of SK-N-SH and BE(2)-C human neuroblastomas; tumors demonstrated increased expression of angiogenic markers, PECAM-1 and VEGF, as well as phosphorylated (p)-Akt levels. RC-3095, a BBS/GRP antagonist, attenuated BBS-stimulated tumor growth and angiogenesis in vivo. GRP or GRPR silencing significantly inhibited VEGF as well as p-Akt and p-mTOR expression in vitro. Our findings demonstrate that BBS stimulates neuroblastoma growth and the expression of angiogenic markers. Importantly, these findings suggest that novel therapeutic agents, targeting BBS-mediated angiogenesis, may be useful adjuncts in patients with advanced-stage neuroblastomas.
OPG (osteoprotegerin) is an inhibitor of osteoclastogenesis and recent work suggests it has a role in atherosclerosis. Therefore we measured serum OPG levels in patients with coronary artery disease, compared the serum OPG levels among the different groups according to the number of stenotic vessels and determined whether there was any correlation with aortic calcification, LV (left ventricular) mass index and serum CRP (C-reactive protein) levels. Subjects (n=100; mean age, 57 years) who underwent coronary angiograms were enrolled. Blood pressure, body mass index, fasting blood glucose, lipid profiles and CRP levels were measured and the LV mass indices were calculated using ECGs. Serum OPG levels were measured by ELISA. The presence of calcification in the aortic notch was checked by a chest X-ray. The subjects were divided into four groups according to the number of stenotic vessels. The mean serum OPG levels increased significantly as the number of stenotic vessels increased, and the mean serum OPG levels were higher in the group with three-vessel disease compared with the groups with no- or one-vessel disease. The mean serum CRP level was significantly higher in the group with three-vessel disease compared with the groups with no-, one- and two-vessel disease. Age and LV mass index showed significant positive correlations with serum OPG levels, although significance was lost after an adjustment for age. Serum CRP levels were positively correlated with serum OPG levels even after an adjustment for age. There were no differences in serum OPG levels according to the presence of fasting hyperglycaemia or aortic calcification. In conclusion, serum OPG level was related to the severity of stenotic coronary arteries and serum CRP levels. LV mass indices showed no significant correlation with OPG levels. The precise mechanism for the role of OPG in atherosclerosis needs to be investigated further.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.