This paper shows development challenges for 11-liter heavy-duty off-highway diesel engines to meet Tier 3 emission regulations with a base diesel engine compliant with Tier 2 emission regulations. In the case of the installation of an exhaust gas recirculation (EGR) system for reduction of NOx emissions, there exists a risk of increased particulate matters (PM) emissions. An in-cylinder PM reduction is still necessary since a diesel particulate filter (DPF) after-treatment system is not under the consideration. The objective of this research is to see whether the base engine has a potential to meet Tier 3 emission regulations by changing in-cylinder configuration parameters including the bowl shape, injector position, the number of intake and exhaust valves, injector tip protrusion, and injector tip specifications such as nozzle spray angle and nozzle flow rate. These parameters are very important parts which enhance the air and fuel mixing process that helps the combustion process. Thus, the optimization of these design variables is essential to improve combustion efficiency and emissions reduction. In this study, the multi-dimensional computational fluid dynamics (CFD) code KIVA-3V is used to perform combustion simulations. The Kelvin–Helmholtz/Rayleigh–Taylor (KH-RT) model is employed for spray breakup and a reduced chemical mechanism for n-heptane is employed to simulate ignition delay and combustion of diesel fuel. To verify the simulation results, engine bench tests were performed with installations of the final version of in-cylinder geometry in C1-8 mode which is one of main test cycles to meet Tier 3 emission regulations. Finally, Tier 3 emission regulations have been met with the currently optimized in-cylinder configuration parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.