Breast MR is the most sensitive imaging modality, but there are cases of malignant tumors that are not detected in MR. This study evaluated the frequency and main causes of malignant breast lesions not detected in dynamic contrast-enhanced (DCE) MR. A total of 1707 cases of preoperative breast MR performed between 2020 and 2021 were included. Three radiologists individually reviewed the DCE MRs and found not-detected malignancy cases in the MRs. The final cases were decided through consensus. For the selected cases, images other than DCE MRIs, such as mammography, ultrasounds, diffusion-weighted MRs, and, if possible, contrast-enhanced chest CTs, were analyzed. In the final sample, 12 cases were not detected in DCE MR, and the frequency was 0.7% (12/1707). Six cases were not detected due to known non-enhancing histologic features. In four cases, tumors were located in the breast periphery and showed no enhancement in MR. In the remaining two cases, malignant lesions were not identified due to underlying marked levels of BPE. The frequency of not-detected malignancy in DCE MR is rare. Knowing the causes of each case and correlating it with other imaging modalities could be helpful in the diagnosis of breast malignancy in DCE MR.
The present study evaluated the effectiveness of computer-aided detection (CAD) system in screening automated breast ultrasound (ABUS) and analyzed the characteristics of CAD marks and the causes of false-positive marks. A total of 846 women who underwent ABUS for screening from January 2017 to December 2017 were included. Commercial CAD was used in all ABUS examinations, and its diagnostic performance and efficacy in shortening the reading time (RT) were evaluated. In addition, we analyzed the characteristics of CAD marks and the causes of false-positive marks. A total of 1032 CAD marks were displayed based on the patient and 534 CAD marks on the lesion. Five cases of breast cancer were diagnosed. The sensitivity, specificity, PPV, and NPV of CAD were 60.0%, 59.0%, 0.9%, and 99.6% for 846 patients. In the case of a negative study, it was less time-consuming and easier to make a decision. Among 530 false-positive marks, 459 were identified clearly for pseudo-lesions; the most common cause was marginal shadowing, followed by Cooper’s ligament shadowing, peri-areolar shadowing, rib, and skin lesions. Even though CAD does not improve the performance of ABUS and a large number of false-positive marks were detected, the addition of CAD reduces RT, especially in the case of negative screening ultrasound.
To investigate whether artificial-intelligence-based, computer-aided diagnosis (AI-CAD) could facilitate the detection of missed cancer on digital mammography, a total of 204 women diagnosed with breast cancer with diagnostic (present) and prior mammograms between 2018 and 2020 were included in this study. Two breast radiologists reviewed the mammographic features and classified them into true negative, minimal sign or missed cancer. They analyzed the AI-CAD results with an abnormality score and assessed whether the AI-CAD correctly localized the known cancer sites. Of the 204 cases, 137 were classified as true negative, 33 as minimal signs, and 34 as missed cancer. The sensitivity, specificity and diagnostic accuracy of AI-CAD were 84.7%, 91.5% and 86.3% on diagnostic mammogram and 67.2%, 91.2% and 83.38% on prior mammogram, respectively. The AI-CAD correctly localized 27 cases from 34 missed cancers on prior mammograms. The findings in the preceding mammography of AI-CAD-detected missed cancer were common in the order of calcifications, focal asymmetry and asymmetry. Asymmetry was the most common finding among the seven cases, which could not be detected by AI-CAD in the missed cases (5/7). The assistance of AI-CAD can be helpful in the early detection of breast cancer in mammography screenings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.