We propose a novel generative adversarial network for class-conditional data augmentation (i.e., GANDA) to mitigate data imbalance problems in image classification tasks. The proposed GANDA generates minority class data by exploiting majority class information to enhance the classification accuracy of minority classes. For stable GAN training, we introduce a new denoising autoencoder initialization with explicit class conditioning in the latent space, which enables the generation of definite samples. The generated samples are visually realistic and have a high resolution. Experimental results demonstrate that the proposed GANDA can considerably improve classification accuracy, especially when datasets are highly imbalanced on standard benchmark datasets (i.e., MNIST and CelebA). Our generated samples can be easily used to train conventional classifiers to enhance their classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.