Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the selfsustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 Â 5 cm at wind speed of 15 ms À 1 exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 mA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner.
We provide an analytic study of the dynamics of semiconductor lasers with injection (pump) of spin-polarized electrons, previously considered in the steady-state regime. Using complementary approaches of quasi-static and small signal analyses, we elucidate how the spin modulation in semiconductor lasers can improve performance, as compared to the conventional (spin-unpolarized) counterparts. We reveal that the spin-polarized injection can lead to an enhanced bandwidth and desirable switching properties of spin-lasers.
The compliance of a fin affects the thrust of underwater vehicles mimicking the undulatory motion of fish. Determining the optimal compliance of a fin to maximize thrust is an important issue in designing robotic fish using a compliant fin. We present a simple method to identify the condition for maximizing the thrust generated by a compliant fin propulsion system. When a fin oscillates in a sinusoidal manner, it also bends in a sinusoidal manner. We focus on a particular kinematic parameter of this motion: the phase difference between the sinusoidal motion of the driving angle and the fin-bending angle. By observing the relationship between the thrust and phase difference, we conclude that while satisfying the zero velocity condition, the maximum thrust is obtained when a compliance creates a phase difference of approximately π/2 at a certain undulation frequency. This half-pi phase delay condition is supported by thrust measurements from different compliant fins (four caudal-shaped fins with different aspect ratios) and a beam bending model of the compliant fin. This condition can be used as a guideline to select the proper compliance of a fin when designing a robotic fish.Index Terms-Compliant fin, flapping, flexible fin, flexible foil, half-pi phase delay, maximum thrust, pseudo-rigid-body model, robotic fish, underwater robot.
We explore similarities between the quantum wells and quantum dots used as optical gain media in semiconductor lasers. We formulate a mapping procedure which allows a simpler, often analytical, description of quantum well lasers to study more complex lasers based on quantum dots. The key observation in relating the two classes of laser is that the influence of a finite capture time on the operation of quantum dot lasers can be approximated well by a suitable choice of the gain compression factor in quantum well lasers. Our findings are applied to the rate equations for both conventional (spin-unpolarized) and spin lasers in which spin-polarized carriers are injected optically or electrically. We distinguish two types of mapping that pertain to the steady-state and dynamical operation respectively and elucidate their limitations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.