In this study, artificial neural network (ANN) models were constructed to predict the rainfall during May and June for the Han River basin, South Korea. This was achieved using the lagged global climate indices and historical rainfall data. Monte-Carlo cross-validation and aggregation (MCCVA) was applied to create an ensemble of forecasts. The input-output patterns were randomly divided into training, validation, and test datasets. This was done 100 times to achieve diverse data splitting. In each data splitting, ANN training was repeated 100 times using randomly assigned initial weight vectors of the network to construct 10,000 prediction ensembles and estimate their prediction uncertainty interval. The optimal ANN model that was used to forecast the monthly rainfall in May had 11 input variables of the lagged climate indices such as the Arctic Oscillation (AO), East Atlantic/Western Russia Pattern (EAWR), Polar/Eurasia Pattern (POL), Quasi-Biennial Oscillation (QBO), Sahel Precipitation Index (SPI), and Western Pacific Index (WP). The ensemble of the rainfall forecasts exhibited the values of the averaged root mean squared error (RMSE) of 27.4, 33.6, and 39.5 mm, and the averaged correlation coefficient (CC) of 0.809, 0.725, and 0.641 for the training, validation, and test sets, respectively. The estimated uncertainty band has covered 58.5% of observed rainfall data with an average band width of 50.0 mm, exhibiting acceptable results. The ANN forecasting model for June has 9 input variables, which differed from May, of the Atlantic Meridional Mode (AMM), East Pacific/North Pacific Oscillation (EPNP), North Atlantic Oscillation (NAO), Scandinavia Pattern (SCAND), Equatorial Eastern Pacific SLP (SLP_EEP), and POL. The averaged RMSE values are 39.5, 46.1, and 62.1 mm, and the averaged CC values are 0.853, 0.771, and 0.683 for the training, validation, and test sets, respectively. The estimated uncertainty band for June rainfall forecasts generally has a coverage of 67.9% with an average band width of 83.0 mm. It can be concluded that the neural network with MCCVA enables us to provide acceptable medium-term rainfall forecasts and define the prediction uncertainty interval.
For the design of infrastructures controlling the flood events at ungauged basins, this study tries to find the regional flood frequencies using peak flow data generated by the spatial extension of flood records. The Chungju Dam watershed is selected to validate the possibility of regional flood frequency analysis using the spatially extended flood data. Firstly, based on the index flood method, the flood event data from the spatial extension method is evaluated for 22 mid/smaller sub-basins at the Chungju Dam watershed. The homogeneity of the Chungju dam watershed was assessed in terms of the different size of watershed conditions such as accumulated and individual sub-basins. Based on the result of homogeneity analysis, this watershed is heterogeneous with respect to individual sub-basins because of the heterogeneity of rainfall distribution. To decide the regional probability distribution, goodness-of fit measure and weighted moving averages method from flood frequency analysis were adopted. Finally, GEV distribution was selected as a representative distribution and regional quantile were estimated. This research is one step further method to estimate regional flood frequency for ungauged basins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.