Consolidating multiple applications on a system can improve the overall resource utilization of data center systems. However, such consolidation can adversely affect the performance of some applications due to interference caused by resource contention. Despite many prior studies on the interference effects in single-node systems, the interference behaviors of distributed parallel applications have not been investigated thoroughly. With distributed applications, a local interference in a node can affect the whole execution of an application spanning many nodes. This paper studies an interference modeling methodology for distributed applications to predict their performance under interference effects in consolidated clusters. This study first characterizes the effects of interference for various distributed applications over different interference settings, and analyzes how diverse interference intensities on multiple nodes affect the overall performance. Based on the characterization, this study proposes a static profiling-based model for interference propagation and heterogeneity behaviors. In addition, this paper presents use case studies of the modeling method, two interference-aware placement techniques for consolidated virtual clusters, which attempt to maximize the overall throughput or to guarantee the quality-of-service.
Consolidating multiple applications on a system can improve the overall resource utilization of data center systems. However, such consolidation can adversely affect the performance of some applications due to interference caused by resource contention. Despite many prior studies on the interference effects in single-node systems, the interference behaviors of distributed parallel applications have not been investigated thoroughly. With distributed applications, a local interference in a node can affect the whole execution of an application spanning many nodes. This paper studies an interference modeling methodology for distributed applications to predict their performance under interference effects in consolidated clusters. This study first characterizes the effects of interference for various distributed applications over different interference settings, and analyzes how diverse interference intensities on multiple nodes affect the overall performance. Based on the characterization, this study proposes a static profiling-based model for interference propagation and heterogeneity behaviors. In addition, this paper presents use case studies of the modeling method, two interference-aware placement techniques for consolidated virtual clusters, which attempt to maximize the overall throughput or to guarantee the quality-of-service.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.