The response of Al2O3:C optically stimulated luminescence detectors (OSLDs) was investigated in a 250 MeV pencil proton beam. The OSLD response was mapped for a wide range of average dose rates up to 9000 Gy s−1, corresponding to a ∼150 kGy s−1 instantaneous dose rate in each pulse. Two setups for ultra-high dose rate (FLASH) experiments are presented, which enable OSLDs or biological samples to be irradiated in either water-filled vials or cylinders. The OSLDs were found to be dose rate independent for all dose rates, with an average deviation <1% relative to the nominal dose for average dose rates of (1–1000) Gy s−1 when irradiated in the two setups. A third setup for irradiations in a 9000 Gy s−1 pencil beam is presented, where OSLDs are distributed in a 3 × 4 grid. Calculations of the signal averaging of the beam over the OSLDs were in agreement with the measured response at 9000 Gy s−1. Furthermore, a new method was presented to extract the beam spot size of narrow pencil beams, which is in agreement within a standard deviation with results derived from radiochromic films. The Al2O3:C OSLDs were found applicable to support radiobiological experiments in proton beams at ultra-high dose rates.
Ionization quenching in organic scintillators is usually corrected with methods that require careful assessment of the response relative to that of an ionization chamber. Here, we present a framework to compute ionization quenching correction factors (QCFs) from first principles for organic plastic scintillators exposed to ions. The tool solves the kinetic Blanc equation, of which the Birks model is a simplified solution, based on amorphous track structures models. As a consequence, ionization quenching correction factors can be calculated relying only on standard, tabulated scintillator material properties such as the density, light yield, and decay time. The tool is validated against experimentally obtained QCFs for two different organic plastic scintillators irradiated with protons with linear energy transfers (LETs) between 5-[Formula: see text]. The QCFs computed from amorphous track structure models and the BC-400 scintillator properties deviate less than 3% from the Birks model for LETs below [Formula: see text] and less than 5% for higher LETs. The agreement between experiments and the software for the BCF-12 scintillator is within 2% for LETs below [Formula: see text] and within 10% for LETs above, comparable to the experimental uncertainties. The framework is compiled into the open source software [Formula: see text] available for download. [Formula: see text] enables computations of QCFs in organic plastic scintillators exposed to ions independently of experimentally based quenching parameters in contrast to the Birks model. [Formula: see text] can improve the accuracy of correction factors and understanding of ionization quenching in scintillator dosimetry.
The objective of this study was to improve the precision of linear energy transfer (LET) measurements using $$\text {Al}_2\text {O}_3\text {:C}$$ Al 2 O 3 :C optically stimulated luminescence detectors (OSLDs) in proton beams, and, with that, improve OSL dosimetry by correcting the readout for the LET-dependent ionization quenching. The OSLDs were irradiated in spot-scanning proton beams at different doses for fluence-averaged LET values in the (0.4–6.5) $$\hbox {keV}\, \upmu \hbox {m}^{-1}$$ keV μ m - 1 range (in water). A commercial automated OSL reader with a built-in beta source was used for the readouts, which enabled a reference irradiation and readout of each OSLD to establish individual corrections. Pulsed OSL was used to separately measure the blue (F-center) and UV ($$F^+$$ F + -center) emission bands of $$\text {Al}_2\text {O}_3\text {:C}$$ Al 2 O 3 :C and the ratio between them (UV/blue signal) was used for the LET measurements. The average deviation between the simulated and measured LET values along the central beam axis amounts to 5.5% if both the dose and LET are varied, but the average deviation is reduced to 3.5% if the OSLDs are irradiated with the same doses. With the measurement procedure and automated equipment used here, the variation in the signals used for LET estimates and quenching-corrections is reduced from 0.9 to 0.6%. The quenching-corrected OSLD doses are in agreement with ionization chamber measurements within the uncertainties. The automated OSLD corrections are demonstrated to improve the LET estimates and the ionization quenching-corrections in proton dosimetry for a clinically relevant energy range up to 230 MeV. It is also for the first time demonstrated how the LET can be estimated for different doses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.