BACKGROUND Neoantigen-driven recognition and T cell–mediated killing contribute to tumor clearance following adoptive cell therapy (ACT) with tumor-infiltrating lymphocytes (TILs). Yet how diversity, frequency, and persistence of expanded neoepitope-specific CD8 + T cells derived from TIL infusion products affect patient outcome is not fully determined. METHODS Using barcoded pMHC multimers, we provide a comprehensive mapping of CD8 + T cells recognizing neoepitopes in TIL infusion products and blood samples from 26 metastatic melanoma patients who received ACT. RESULTS We identified 106 neoepitopes within TIL infusion products corresponding to 1.8% of all predicted neoepitopes. We observed neoepitope-specific recognition to be virtually devoid in TIL infusion products given to patients with progressive disease outcome. Moreover, we found that the frequency of neoepitope-specific CD8 + T cells in TIL infusion products correlated with increased survival and that neoepitope-specific CD8 + T cells shared with the infusion product in posttreatment blood samples were unique to responders of TIL-ACT. Finally, we found that a transcriptional signature for lymphocyte activity within the tumor microenvironment was associated with a higher frequency of neoepitope-specific CD8 + T cells in the infusion product. CONCLUSIONS These data support previous case studies of neoepitope-specific CD8 + T cells in melanoma and indicate that successful TIL-ACT is associated with an expansion of neoepitope-specific CD8 + T cells. FUNDING NEYE Foundation; European Research Council; Lundbeck Foundation Fellowship; Carlsberg Foundation.
CD8+ T cell reactivity towards tumor mutation-derived neoantigens is widely believed to facilitate the antitumor immunity induced by immune checkpoint blockade (ICB). Here we show that broadening in the number of neoantigen-reactive CD8+ T cell (NART) populations between pre-treatment to 3-weeks post-treatment distinguishes patients with controlled disease compared to patients with progressive disease in metastatic urothelial carcinoma (mUC) treated with PD-L1-blockade. The longitudinal analysis of peripheral CD8+ T cell recognition of patient-specific neopeptide libraries consisting of DNA barcode-labelled pMHC multimers in a cohort of 24 patients from the clinical trial NCT02108652 also shows that peripheral NARTs derived from patients with disease control are characterised by a PD1+ Ki67+ effector phenotype and increased CD39 levels compared to bystander bulk- and virus-antigen reactive CD8+ T cells. The study provides insights into NART characteristics following ICB and suggests that early-stage NART expansion and activation are associated with response to ICB in patients with mUC.
Missense driver mutations in cancer are concentrated in a few hotspots1. Various mechanisms have been proposed to explain this skew, including biased mutational processes2, phenotypic differences3–6 and immunoediting of neoantigens7,8; however, to our knowledge, no existing model weighs the relative contribution of these features to tumour evolution. We propose a unified theoretical ‘free fitness’ framework that parsimoniously integrates multimodal genomic, epigenetic, transcriptomic and proteomic data into a biophysical model of the rate-limiting processes underlying the fitness advantage conferred on cancer cells by driver gene mutations. Focusing on TP53, the most mutated gene in cancer1, we present an inference of mutant p53 concentration and demonstrate that TP53 hotspot mutations optimally solve an evolutionary trade-off between oncogenic potential and neoantigen immunogenicity. Our model anticipates patient survival in The Cancer Genome Atlas and patients with lung cancer treated with immunotherapy as well as the age of tumour onset in germline carriers of TP53 variants. The predicted differential immunogenicity between hotspot mutations was validated experimentally in patients with cancer and in a unique large dataset of healthy individuals. Our data indicate that immune selective pressure on TP53 mutations has a smaller role in non-cancerous lesions than in tumours, suggesting that targeted immunotherapy may offer an early prophylactic opportunity for the former. Determining the relative contribution of immunogenicity and oncogenic function to the selective advantage of hotspot mutations thus has important implications for both precision immunotherapies and our understanding of tumour evolution.
The evolution of cetaceans (whales, dolphins, and porpoises) from land to water is one of the most spectacular events in mammal evolution. It has been suggested that selection for higher myoglobin stability (∆G of folding) allowed whales to conquer the deep-diving niche. The stability of multi-site protein variants, including ancient proteins, is however hard to describe theoretically. From a compilation of experimental ∆∆G vs. ∆G we first find that protein substitutions are subject to large generic protein relaxation effects. Using this discovery, we develop a simple two-parameter model that predicts multi-site ∆∆G as accurately as standard methods do for single-site mutations and reproduces trends in contemporary myoglobin stabilities. We then apply this new method to the study of the evolution of Mb stability in cetaceans: With both methods the main change in stability (about 1kcal/mol) occurred very early, and stability was later relaxed in dolphins and porpoises, but was further increased in the sperm whales. This suggests that single proteins can affect whole organism evolution and indicates a role of Mb stability in the evolution of cetaceans. Transition to the deep-diving niche probably occurred already in the ancestor of contemporary baleen and toothed whales. In summary, we have discovered generic stability relaxation effects in proteins that, when incorporated into a simple model, improves the description of multi-site protein variants.
3075 Background: Proliferation of CD8 T cells can be detected in the blood of cancer patients (pts) following a single dose of immune checkpoint blockade (ICB) and tends to be more robust in responding pts. Furthermore, tumor mutational burden (TMB) is seen to predict outcome to ICB across cancers. Mutation-derived neoepitopes presented on the tumor cell surface is believed to be recognized by T cells and are thus critical for tumor clearance. However, the capacity to mount a neoantigen T cell response and the kinetics in relation to ICB remain poorly understood. Methods: 24 pts with mUC were treated with atezolizumab (anti-PD-L1) 1200mg q3w on IMVigor 210 at MSKCC and included in here. Pt-specific neoepitopes were predicted based on whole-exome and RNA sequencing of pre-treatment archival tumors using the MuPeXI platform. Using DNA-barcode labelled pMHC multimers, we investigated CD8 T cell recognition of mutation-derived neoepitopes by screening pt PBMC samples pre- and post-treatment with atezolizumab (n = 85 PBMC samples). The kinetics of neoepitope-specific CD8 T cells were assessed for association with durable clinical benefit (DCB; defined as progression free survival > 6 mo). Results: Neoepitope peptide libraries of between 200-587 peptides were generated per pt (mean = 260 peptides per pt). 31 out of a combined 56 possible pt HLA types across the cohort were utilized for T cell analyses (mean four HLAs per pt). MHC multimer-based screening of pt PBMCs revealed detection of neoepitope-specific CD8 T cells in 22 of 24 pts pre-treatment (range one to 14 neoepitope responses) and 21 of 22 pts post-treatment (up to 273 weeks after trial start; one to 19 neoepitope responses). There were large inter- and intra-patient variations of neoepitope-specific CD8 T cell responses during treatment with the largest increases occurring at the 3-wk, post-treatment initiation timepoint. We observed that pts with DCB tend to raise a broader neoantigen T cell response than patients without DCB. 38% of pts without DCB and 67% of pts with DCB exhibited an increase in neoepitope-specific CD8 T cell responses within 3 wks of treatment initiation. Conclusions: Using high-throughput screening, pt-specific neoepitope reactive CD8 T cells could be detected pre- and post-treatment in pts with mUC treated with atezolizumab. Phenotypic characterization of neoepitope reactive CD8 T cells is ongoing. These data may help elucidate the dynamics and characteristics of the T cells of highest relevance to the ICB-induced, anti-tumor immune response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.