We demonstrate selective trapping or rotation of optically isotropic dielectric microparticles by plasmonic near field in a single gold plasmonic Archimedes spiral. Depending on the handedness of circularly polarized excitation, plasmonic near fields can be selectively engineered into either a focusing spot for particle trapping or a plasmonic vortex for particle rotation. Our design provides a simple solution for subwavelength optical manipulation and may find applications in micromechanical and microfluidic systems.
Fusarium oxysporum f. sp. cubense is the causal agent of Panama disease of banana. A rapid and reliable diagnosis is the foundation of integrated disease management practices in commodity crops. For this diagnostic purpose, we have developed a reliable molecular method to detect Foc race 4 isolates in Taiwan. By PCR amplification, the primer set Foc-1/Foc-2 derived from the sequence of a random primer OP-A02 amplified fragment produced a 242 bp size DNA fragment which was specific to Foc race 4. With the optimized PCR parameters, the molecular method was sensitive and could detect small quantities of Foc DNA as low as 10 pg in 50 to 2,000 ng host genomic DNA with high efficiency. We also demonstrated that by using our PCR assay with Foc-1/Foc-2 primer set, Foc race 4 could be easily distinguished from other Foc races 1 and 2, and separated other formae speciales of F. oxysporum.
We fabricated Au-Cu₂O core-shell octahedra, cuboctahedra, and nanocubes having sizes of 90-220 nm using 50 nm octahedral cores. The smaller particle sizes minimize the strong light scattering features from the Cu₂O shells and enable the surface plasmon resonance (SPR) absorption band of the gold cores to be clearly identified. Beyond a lower shell thickness limit, the SPR band positions of the gold cores are independent of the shell thickness, but are strongly dependent on the exposed particle surfaces. The plasmonic band red-shifts from Au-Cu₂O octahedra to cuboctahedra and nanocubes, and differs by as much as 26 nm between the octahedra and the nanocubes. The same facet-dependent optical effects were observed using larger octahedral gold cores and cubic gold cores. In contrast, simulation spectra show progressively red-shifted SPR band positions with increasing shell thickness. The Cu₂O shells are also found to exhibit facet-dependent optical behavior. These nanocrystals can respond to changes in the solvent environment such as solvents with different refractive indices, indicating that the plasmonic field of the gold cores can extend beyond the particle surfaces despite the presence of thick shells. Plane-selective spectral responses to low concentrations of surfactants were also recorded.
Two-pulse correlation is employed to investigate the temporal dynamics of both two-photon photoluminescence (2PPL) and four-photon photoluminescence (4PPL) in resonant and nonresonant nanoantennas excited at a wavelength of 800 nm. Both 2PPL and 4PPL data are consistent with the same two-step model already established for 2PPL, implying that the first excitation step in 4PPL is a three-photon sp → sp direct interband transition. Considering energy and parity conservation, we also explain why 4PPL behavior is favored over, for example, three- and five-photon photoluminescence in the power range below the damage threshold of our antennas. Since sizable 4PPL requires larger peak intensities of the local field, we are able to select either 2PPL or 4PPL in the same gold nanoantennas by choosing a suitable laser pulse duration. We thus provide a first consistent model for the understanding of multiphoton photoluminescence generation in gold nanoantennas, opening new perspectives for applications ranging from the characterization of plasmonic resonances to biomedical imaging.
Gold nanocubes, octahedra, and rhombic dodecahedra with roughly two sets of particle sizes have been successfully synthesized via a seed-mediated growth approach. All six samples were analyzed for comparative surface-enhanced Raman scattering (SERS) activity. All of these Au nanostructures were found to yield strong enhancement at a thiophenol concentration of 10(-7) M and are excellent SERS substrates. Rhombic dodecahedra with a rhombus edge length of 32 nm showed significantly better enhancement than the other samples and can reach a detection limit of 10(-8) M. Simulations of the binding energies of thiophenol on the different faces of gold and electric near-field intensities of these nanocrystals have been performed to evaluate the experimental results. Superior SERS activity of these nanocrystals can be expected toward the detection of many other molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.