Phosphorylation of histone H3 at serine 10 occurs during mitosis and meiosis in a wide range of eukaryotes and has been shown to be required for proper chromosome transmission in Tetrahymena. Here we report that Ipl1/aurora kinase and its genetically interacting phosphatase, Glc7/PP1, are responsible for the balance of H3 phosphorylation during mitosis in Saccharomyces cerevisiae and Caenorhabditis elegans. In these models, both enzymes are required for H3 phosphorylation and chromosome segregation, although a causal link between the two processes has not been demonstrated. Deregulation of human aurora kinases has been implicated in oncogenesis as a consequence of chromosome missegregation. Our findings reveal an enzyme system that regulates chromosome dynamics and controls histone phosphorylation that is conserved among diverse eukaryotes.
Multiple covalent modifications exist in the amino-terminal tails of core histones, but whether a relationship exists between them is unknown. We examined the relationship between serine 10 phosphorylation and lysine 14 acetylation in histone H3 and have found that, in vitro, several HAT enzymes displayed increased activity on H3 peptides bearing phospho-Ser-10. This augmenting effect of Ser-10 phosphorylation on acetylation by yGcn5 was lost by substitution of alanine for arginine 164 [Gcn5(R164A)], a residue close to Ser-10 in the structure of the ternary tGcn5/CoA/histone H3 complex. Gcn5(R164A) had reduced activity in vivo at a subset of Gcn5-dependent promoters, and, strikingly, transcription of this same subset of genes was also impaired by substitution of serine 10 to alanine in the histone H3 tail. These observations suggest that transcriptional regulation occurs by multiple mechanistically linked covalent modifications of histones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.