ABSTRACT:The chronology of 2-alkenyl azlactone research at 3M is discussed in terms of its origination; consideration of economics, overall safety, and opportunities for patent protection; elaboration of the chemistry; and, finally, applying lessons learned toward the development of commercial technologies. The chemistry is dominated by the presence of three electrophilic reaction centers and a readily polymerizable 2-alkenyl group.
Polyolefins are finding increased popularity in microfluidic applications due to their attractive mechanical, processing, and optical properties. While intricate features are typically realized in these thermoplastics by hot embossing and injection molding, such fabrication approaches are expensive and slow. Here, we apply our shrink-induced approach-first demonstrated with polystyrene 'Shrinky-Dink' sheets-to create micro- and nanostructures with cross-linked polyolefin thin films. These multi-layered films shrink by 95% and with greater uniformity than the Shrinky-Dinks. With such significant reduction in size, along with attractive material properties, such commodity films could find important applications in low cost microfluidic prototyping as well as in point-of-care diagnostics. In this technical note, we demonstrate the ability to rapidly and easily create unique microstructures, increase microarray feature density, and even induce self-assembled integrated metallic nanostructures with these shrink wrap films.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.