The crystal structure of the human cyclinA-cyclin-dependent kinase2 (CDK2)-ATP complex has been determined at 2.3 A resolution. CyclinA binds to one side of CDK2's catalytic cleft, inducing large conformational changes in its PSTAIRE helix and T-loop. These changes activate the kinase by realigning active site residues and relieving the steric blockade at the entrance of the catalytic cleft.
The crystal structure of the human DNA polymerase delta processivity factor PCNA (proliferating cell nuclear antigen) complexed with a 22 residue peptide derived from the C-terminus of the cell-cycle checkpoint protein p21(WAF1/CIP1) has been determined at 2.6 angstrom resolution. p21 binds to PCNA in a 1:1 stoichiometry with an extensive array of interactions that include the formation of a beta sheet with the interdomain connector loop of PCNA. An intact trimeric ring is maintained in the structure of the p21-PCNA complex, with a central hole available for DNA interaction. The ability of p21 to inhibit the action of PCNA is therefore likely to be due to its masking of elements on PCNA that are required for the binding of other components of the polymerase assembly.
The coactivator CBP has been proposed to stimulate the expression of certain signal-dependent genes via its association with RNA polymerase II complexes. Here we show that complex formation between CBP and RNA polymerase II requires RNA helicase A (RHA), a nuclear DNA/RNA helicase that is related to the Drosophila male dosage compensation factor mle. In transient transfection assays, RHA was found to cooperate with CBP in mediating target gene activation via the CAMP responsive factor CREB. As a mutation in RHA that compromised its helicase activity correspondingly reduced CREB-dependent transcription, we propose that RHA may induce local changes in chromatin structure that promote engagement of the transcriptional apparatus on signal responsive promoters.
Mammalian cell-cycle control by antimitogenic signals involves p21Cip1/WAF1 (refs 1-4), p27Kip1 (refs 5, 6) and p57Kip2 (refs 7, 8), a family of proteins that bind to and inhibit cyclin-dependent kinases (CDKs) required for initiation of S phase. The protein p21 also binds to the DNA polymerase delta processivity factor, proliferating-cell nuclear antigen (PCNA), and inhibits in vitro PCNA-dependent DNA replication. The CDK and PCNA inhibitory activities of p21 are shown here to be functionally independent and to reside in separate protein domains. The PCNA binding and inhibitory activities, which are not observed with p27 or p57, reside in the C-terminal domain of p21, whereas the CDK inhibitory activity resides in the conserved N-terminal domains of these proteins. When separately overexpressed in mammalian cells, the CDK and PCNA inhibitory domains prevent DNA replication, demonstrating a dual function of p21 as a cell-cycle inhibitor in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.