The mammalian target of rapamycin (mTOR) is a central regulator of G1 cell cycle protein synthesis that precedes commitment to normal cellular replication. We have studied the effect of cell cycle inhibitor-779 (CCI-779), a rapamycin ester that inhibits mTOR function, on the proliferation of a panel of breast cancer cell lines. Six of eight lines studied were sensitive (IC 50 ȅ 50 nM) and two lines were resistant (IC 50 >1. kip-1 levels. There was good correlation between activation of the Akt pathway and sensitivity to CCI-779. Amplification of mTOR-regulated p70S6 kinase, which is downstream of Akt, may also have conferred CCI-779 sensitivity to MCF-7 cells. Taken together, the data suggest that mTOR may be a good target for breast cancer therapy, especially in tumors with Akt activation resulting from either growth factor dependency or loss of PTEN function. Endocrine-Related Cancer (2001) 8 249-258
The cell was immersed in liquid nitrogen. (4) When the radical was purified carefully by distillation, cooling of the radical solution did not bring about the significant change of the spectrum for the region shorter than 400 nm (Figure 1a and 1b), and the absorption intensity in 650-nm region at 77°K is smaller than that reported previously.2 Addition of a metal halide to the solution sometimes results In an increase of the intensity at around 610 nm with the spectral change In the shorter region. For example, Xma, (e) for 1a in MTHF with lithium Iodide at 77°K is 618 nm (4800) at the concentration of 4.7 X 10-3 M. This is explained by the complex formation of 1a with lithium iodide.1 (5) R.
The solution structure of the catalytic fragment of human fibroblast collagenase (MMP-1) complexed with a sulfonamide derivative of a hydroxamic acid compound (CGS-27023A) has been determined using two-dimensional and three-dimensional heteronuclear NMR spectroscopy. The solution structure of the complex was calculated by means of hybrid distance geometry-simulated annealing using a combination of experimental NMR restraints obtained from the previous refinement of the inhibitor-free MMP-1 (1) and recent restraints for the MMP-1:CGS-27023A complex. The hydroxamic acid moiety of CGS-27023A was found to chelate to the "right" of the catalytic zinc where the p-methoxyphenyl sits in the S1' active-site pocket, the isopropyl group is in contact with H83 and N80, and the pyridine ring is solvent exposed. The sulfonyl oxygens are in hydrogen-bonding distance to the backbone NHs of L81 and A82. This is similar to the conformation determined by NMR of the inhibitor bound to stromelysin (2, 3). A total of 48 distance restraints were observed between MMP-1 and CGS-27023A from 3D 13C-edited/12C-filtered NOESY and 3D 15N-edited NOESY experiments. An additional 18 intramolecular restraints were observed for CGS-27023A from a 2D 12C-filtered NOESY experiment. A minimal set of NMR experiments in combination with the free MMP-1 assignments were used to assign the MMP-1 (1)H, 13C, and 15N resonances in the MMP-1:CGS-27023A complex. The assignments of CGS-27023A in the complex were obtained from 2D 12C-filtered NOESY and 2D 12C-filtered TOCSY experiments.
Uterine leiomyomata, or fibroids, are benign tumors of the uterine myometrium that significantly affect up to 30% of reproductive-age women. Despite being the primary cause of hysterectomy in the United States, accounting for up to 200,000 procedures annually, the etiology of leiomyoma remains largely unknown. As a basis for understanding leiomyoma pathogenesis and identifying targets for pharmacotherapy, we conducted transcriptional profiling of leiomyoma and unaffected myometrium from humans and Eker rats, the best characterized preclinical model of leiomyomata. A global comparison of mRNA from leiomyoma versus myometrium in human and rat identified a highly significant overlap of dysregulated gene expression in leiomyomata. An unbiased pathway analysis using a method of gene-set enrichment based on the sigPathway algorithm detected the mammalian target of rapamycin (mTOR) pathway as one of the most highly up-regulated pathways in both human and rat tumors. To validate this pathway as a therapeutic target for uterine leiomyomata, preclinical studies were conducted in Eker rats. These rats develop uterine leiomyomata as a consequence of loss of Tsc2 function and up-regulation of mTOR signaling. Inhibition of mTOR in female Eker rats with the rapamycin analogue WAY-129327 for 2 weeks decreased mTOR signaling and cell proliferation in tumors, and treatment for 4 months significantly decreased tumor incidence, multiplicity, and size. These results identify dysregulated mTOR signaling as a component of leiomyoma etiology across species and directly show the dependence of uterine leiomyomata with activated mTOR on this signaling pathway for growth. [Cancer Res 2009;69(15):6171-8]
The macrocyclic polyketides FK506, FK520, and rapamycin are potent immunosuppressants that prevent T-cell proliferation through initial binding to the immunophilin FKBP12. Analogs of these molecules are of considerable interest as therapeutics in both metastatic and inflammatory disease. For these polyketides the starter unit for chain assembly is (4 R ,5 R )-4,5-dihydroxycyclohex-1-enecarboxylic acid derived from the shikimate pathway. We show here that the first committed step in its formation is hydrolysis of chorismate to form (4 R ,5 R )-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. This chorismatase activity is encoded by fkbO in the FK506 and FK520 biosynthetic gene clusters, and by rapK in the rapamycin gene cluster of Streptomyces hygroscopicus . Purified recombinant FkbO (from FK520) efficiently catalyzed the chorismatase reaction in vitro, as judged by HPLC-MS and NMR analysis. Complementation using fkbO from either the FK506 or the FK520 gene cluster of a strain of S. hygroscopicus specifically deleted in rapK (BIOT-4010) restored rapamycin production, as did supplementation with (4 R ,5 R )-4,5-dihydroxycyclohexa-1,5-dienecarboxylic acid. Although BIOT-4010 produced no rapamycin, it did produce low levels of BC325, a rapamycin analog containing a 3-hydroxybenzoate starter unit. This led us to identify the rapK homolog hyg5 as encoding a chorismatase/3-hydroxybenzoate synthase. Similar enzymes in other bacteria include the product of the bra8 gene from the pathway to the terpenoid natural product brasilicardin. Expression of either hyg5 or bra8 in BIOT-4010 led to increased levels of BC325. Also, purified Hyg5 catalyzed the predicted conversion of chorismate into 3-hydroxybenzoate. FkbO, RapK, Hyg5, and Bra8 are thus founder members of a previously unrecognized family of enzymes acting on chorismate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.