Forested headwater streams rely on their riparian areas for temperature regulation, woody debris inputs, and sediment retention. These products and services may be altered by disturbances such as timber harvest, windthrow, or development. This study investigated the effects of riparian forest disturbance by removing trees using 50 and 90% basal area harvests and by directly felling some trees into eight streams in eastern West Virginia. On summer afternoons, water temperature increased in the 50 and 90% BAH treatments at average rates of 0.18 and 0.79°C/ 100 m, respectively. The 90% BAH treatments had the potential to disrupt fish and invertebrate communities via increased water temperature. New roads and log landings associated with the riparian logging had no detectable effect on sedimentation or turbidity. Large woody debris (LWD) additions increased habitat complexity but no net increase in pool area was observed. Greater morphological instability was observed within the LWD addition sections as pools were both created and destroyed at significantly higher rates. Experimentally manipulating small riparian patches may be an analog for small-scale natural and anthropogenic disturbances. These common events are assumed to alter streams, but there are few experimental studies quantifying their effects.
Despite a recent surge of interest in temporary lentic systems, a strong theory linking the biota to its environment has not emerged. Using data from 10 temporary ponds at Mammoth Cave National Park, Kentucky, USA, we investigated how invertebrate communities were structured along environmental gradients, both between and within ponds. Samples were collected with a benthic corer in winter and spring, and a sweep net in spring. Six between-pond and two within-pond datasets were created. Betweenpond analyses yielded significant CCA's with only one of the six data sets. The ranges of environmental variables (EV's) within ponds were often similar to the ranges of EV's when averaged and compared between ponds. Some taxa were aggregated in a single pond, and richness increased with pond area. The theory that richness increases with hydroperiod did not apply to these systems. Within-pond analyses yielded more consistent relationships, with both CCA's being significant. Sample depth was the best predictor of invertebrate richness and abundance, with most taxa preferring shallow habitats. Richness and abundance were higher in both shallow ponds and shallow areas of deep ponds than in deep areas of deep ponds. Standardizing sample depth may be an effective way to remove this gradient as a confounding variable in future research. The presence of within-pond gradients, possibly coupled with the limited dispersal and random colonization of tolerant taxa, makes between-pond comparisons difficult.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.