The screening process to detect early-stage lung cancer is injurious to a patient’s survival. Fortunately, there are natural compounds that have been acknowledged to possess anticancer properties, work as the protein binding inhibitors of lung cancer promotors: EGF and EGFR. The study aims to identify inhibitors of EGFR protein binding. Assessments were accomplished based on several parameters related to EGFR proteins, such as pathways, protein activity, conformational changes, and numerous information using the STRING database and KEGG pathway database. Ten inhibitor compounds that expressed highest activity were selected for further analysis were: (20R,22R)-5beta,6beta-Epoxy-4beta,12beta,20-trihy-droxy-1-oxowith-2-en-24-enolide, irinotecan, flavopyridol, teniposide, exatecan, daphnoretin, indirubin, topitecan, wentilactone, and evidiamine. The native ligand Lapatinib was used as positive control in this analysis. The analysis was accomplished by molecular docking using Vina 4 in the PyRx software. Interactions between the ligands and residues were investigated using LIGPLOT+ 2.2. The In-silico analysis of the ten candidate compounds revealed that (20R, 22R)-5beta, 6beta-Epoxy-4beta, 12beta, 20-trihydroxy-1-oxowith-2-en-24-enolide expressed the lowest binding energy value, which is -10.4 kcal/mol, indicated the closest binding energy value to Lapatinib as the control. Based on the interaction of amino acids, (20R,22R)-5beta, 6beta-Epoxy-4beta, 12beta, 20-trihydroxy-1-oxowith-2-en-24-enolide has excellent potential to be utilized as next inhibitor com- pound candidates for EGFR protein, because it binds to the Lys745 residue. It mirrors the positive control and has a binding energy on the range of the specified acceptable parameters.
Coronavirus disease known as COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). SARS-CoV-2 binds to the receptor binding-domain of ACE-2. By blocking it with a specific ligand, we can prevent SARS-CoV-2 binding and therefore prevent its cellular entry and injury. The number of COVID-19 cases is still increasing and yet only 2.5% of Indonesians are fully vaccinated. Moreover, up to now, a specific cure for COVID-19 has not been found yet. However, many traditional medicinal plants have the potency of becoming COVID-19 drugs. Therefore, this study aimed to examine various active compounds derivate from the traditional medicinal plant as an inhibitor of SARS-CoV-2 receptor in human cell termed as ACE2. The activity and drug-likeness of the active compounds were predicted and molecular docking were conducted to identify the interactions between ligands and ACE-2. Toxicity assay was also identified to predict the toxicity class, lethal dose, and organ toxicity. This study showed that indirubin has lower binding energy as compared to the sulabiroins A and MLN-4760 as comparative control and potent inhibitor control, respectively. Indirubin shared similar interaction with amino acid residue to ACE-2 as compared to control. Based on the research result, it was suggested that Indirubin could be developed as a promising compound for COVID-19 antiviral drugs.
Objective: Coronavirus disease-19 (COVID-19) is global pandemic which caused by SARS-CoV-2 infection. Mechanism of infection is initiated by attachment between viral glycoprotein with ACE2 receptor in human cells. Furthermore, Indonesia had a massive diversity of plants with a high potency of drugs, such as Pogostemon cablin Benth. In brief, it contained of various volatile compounds with many therapeutic properties. Therefore, this research aimed to identify the ability of volatile compounds from Pogostemon cablin Benth as a potential inhibitor of SARS-CoV-2 spike glycoprotein. Methods: SMILE notation of 22 volatile compounds of Pogostemon cablin Benth were collected from PubChem and the 3D structure of SARS-CoV-2 glycoprotein (PDB ID: 6VXX) was obtained from PDB database. Simulation of interaction between volatile compound and glycoprotein was conducted by using Pyrx molecular docking. Moreover, the complex of compounds-glycoprotein was depicted by using Chimera and the amino acid residue was analysed by using LigPlot. Selected potential compounds were identified for biological activity prediction, drug-likeness, and toxicity analysis. Results: Analysis showed that among those volatile compounds, only caryophyllene oxide (-6.3 kcal/mol) naturally bind specific into RBD site as compared to the control. Furthermore, it had comparable hydrogen and hydrophobic interactions with glycoprotein. Further analysis showed it has strong potential biological function for antiviral with low toxicity. Conclusion: Caryophyllene oxide is considered as promising candidate compounds that inhibited viral infection through SARS-CoV-2 glycoprotein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.