Neuroendocrine (NE) prostate cancer (NEPC) is a lethal subtype of castration-resistant prostate cancer (PCa) arising either de novo or from transdifferentiated prostate adenocarcinoma following androgen deprivation therapy (ADT). Extensive computational analysis has identified a high degree of association between the long noncoding RNA (lncRNA) H19 and NEPC, with the longest isoform highly expressed in NEPC. H19 regulates PCa lineage plasticity by driving a bidirectional cell identity of NE phenotype (H19 overexpression) or luminal phenotype (H19 knockdown). It contributes to treatment resistance, with the knockdown of H19 re-sensitizing PCa to ADT. It is also essential for the proliferation and invasion of NEPC. H19 levels are negatively regulated by androgen signaling via androgen receptor (AR). When androgen is absent SOX2 levels increase, driving H19 transcription and facilitating transdifferentiation. H19 facilitates the PRC2 complex in regulating methylation changes at H3K27me3/H3K4me3 histone sites of AR-driven and NEPC-related genes. Additionally, this lncRNA induces alterations in genome-wide DNA methylation on CpG sites, further regulating genes associated with the NEPC phenotype. Our clinical data identify H19 as a candidate diagnostic marker and predictive marker of NEPC with elevated H19 levels associated with an increased probability of biochemical recurrence and metastatic disease in patients receiving ADT. Here we report H19 as an early upstream regulator of cell fate, plasticity, and treatment resistance in NEPC that can reverse/transform cells to a treatable form of PCa once therapeutically deactivated.
Regulation of mRNA stability and translation plays a critical role in determining protein abundance within cells. Processing bodies (P‐bodies) are critical regulators of these processes. Here, we report that the Pim1 and 3 protein kinases bind to the P‐body protein enhancer of mRNA decapping 3 (EDC3) and phosphorylate EDC3 on serine (S)161, thereby modifying P‐body assembly. EDC3 phosphorylation is highly elevated in many tumor types, is reduced upon treatment of cells with kinase inhibitors, and blocks the localization of EDC3 to P‐bodies. Prostate cancer cells harboring an EDC3 S161A mutation show markedly decreased growth, migration, and invasion in tissue culture and in xenograft models. Consistent with these phenotypic changes, the expression of integrin β1 and α6 mRNA and protein is reduced in these mutated cells. These results demonstrate that EDC3 phosphorylation regulates multiple cancer‐relevant functions and suggest that modulation of P‐body activity may represent a new paradigm for cancer treatment.
The Pim and AKT serine/threonine protein kinases are implicated as drivers of cancer. Their regulation of tumor growth is closely tied to the ability of these enzymes to mainly stimulate protein synthesis by activating mTORC1 (mammalian target of rapamycin complex 1) signaling, although the exact mechanism is not completely understood. mTORC1 activity is normally suppressed by amino acid starvation through a cascade of multiple regulatory protein complexes, e.g., GATOR1, GATOR2, and KICSTOR, that reduce the activity of Rag GTPases. Bioinformatic analysis revealed that DEPDC5 (DEP domain containing protein 5), a component of GATOR1 complex, contains Pim and AKT protein kinase phosphorylation consensus sequences. DEPDC5 phosphorylation by Pim and AKT kinases was confirmed in cancer cells through the use of phospho-specific antibodies and transfection of phospho-inactive DEPDC5 mutants. Consistent with these findings, during amino acid starvation the elevated expression of Pim1 overcame the amino acid inhibitory protein cascade and activated mTORC1. In contrast, the knockout of DEPDC5 partially blocked the ability of small molecule inhibitors against Pim and AKT kinases both singly and in combination to suppress tumor growth and mTORC1 activity in vitro and in vivo. In animal experiments knocking in a glutamic acid (S1530E) in DEPDC5, a phospho mimic, in tumor cells induced a significant level of resistance to Pim and the combination of Pim and AKT inhibitors. Our results indicate a phosphorylation-dependent regulatory mechanism targeting DEPDC5 through which Pim1 and AKT act as upstream effectors of mTORC1 to facilitate proliferation and survival of cancer cells.
The proviral integration site for Moloney murine leukemia virus (PIM) serine/threonine kinases have an oncogenic and prosurvival role in hematological and solid cancers. However, the mechanism by which these kinases drive tumor growth has not been completely elucidated. To determine the genes controlled by these protein kinases, we carried out a microarray analysis in T‐cell acute lymphoblastic leukemia (T‐ALL) comparing early progenitor (ETP‐ALL) cell lines whose growth is driven by PIM kinases to more mature T‐ALL cells that have low PIM levels. This analysis demonstrated that the long noncoding RNA (lncRNA) H19 was associated with increased PIM levels in ETP‐ALL. Overexpression or knockdown of PIM in these T‐ALL cell lines controlled the level of H19 and regulated the methylation of the H19 promoter, suggesting a mechanism by which PIM controls H19 transcription. In these T‐ALL cells, the expression of PIM1 induced stem cell gene expression (SOX2, OCT‐4, and NANOG) through H19. Identical results were found in prostate cancer (PCa) cell lines where PIM kinases drive cancer growth, and both H19 and stem cell gene levels. Small molecule pan‐PIM inhibitors (PIM‐i) currently in clinical trials reduced H19 expression in both of these tumor types. Importantly, the knockdown of H19 blocked the ability of PIM to induce stem cell genes in T‐ALL cells, suggesting a novel signal transduction cascade. In PCa, increases in SOX2 levels have been shown to cause both resistance to the androgen deprivation therapy (ADT) and the induction of neuroendocrine PCa, a highly metastatic form of this disease. Treatment of PCa cells with a small molecule pan‐PIM‐i reduced stem cell gene transcription and enhanced ADT, while overexpression of H19 suppressed the ability of pan‐PIM‐i to regulate hormone blockade. Together, these results demonstrate that the PIM kinases control the level of lncRNA H19, which in turn modifies stem cell gene transcription regulating tumor growth.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.