Hydrogenases are metalloenzymes that catalyze the reversible reduction of protons at unusual metal centers. This Current Topic discusses recent advances in elucidating the steps involved in the biosynthesis of the complex metal cluster at the [FeFe]-hydrogenase (HydA) active site, known as the H-cluster. The H-cluster is composed of a 2Fe subcluster that is anchored within the active site by a bridging cysteine thiolate to a [4Fe-4S] cubane. The 2Fe subcluster contains carbon monoxide, cyanide, and bridging dithiolate ligands. H-cluster biosynthesis is now understood to occur stepwise; standard iron-sulfur cluster assembly machinery builds the [4Fe-4S] cubane of the H-cluster, while three specific maturase enzymes known as HydE, HydF, and HydG assemble the 2Fe subcluster. HydE and HydG are both radical S-adenosylmethionine enzymes that interact with an iron-sulfur cluster binding GTPase scaffold, HydF, during the construction of the 2Fe subcluster moiety. In an unprecedented biochemical reaction, HydG cleaves tyrosine and decomposes the resulting dehydroglycine into carbon monoxide and cyanide ligands. The role of HydE in the biosynthetic pathway remains undefined, although it is hypothesized to be critical for the synthesis of the bridging dithiolate. HydF is the site where the complete 2Fe subcluster is formed and ultimately delivered to the immature hydrogenase protein in the final step of [FeFe]-hydrogenase maturation. This work addresses the roles of and interactions among HydE, HydF, HydG, and HydA in the formation of the mature [FeFe]-hydrogenase.
HydE and HydG are radical S-adenosylmethionine enzymes required for the maturation of [FeFe]-hydrogenase (HydA) and produce the non-protein organic ligands characteristic of its unique catalytic cluster. The catalytic cluster of HydA (the H-cluster) is a typical [4Fe-4S] cubane bridged to a 2Fe-subcluster that contains two carbon monoxide, three cyanide, and a bridging dithiomethylamine as ligands. While recent studies have shed light on the nature of diatomic ligand biosynthesis by HydG, little information exists on the function of HydE. Herein, we present biochemical, spectroscopic, bioinformatics, and molecular modeling data that together map the active site and provide significant insight into the role of HydE in H-cluster biosynthesis. Electron paramagnetic resonance and UV-visible spectroscopic studies demonstrate that reconstituted HydE binds two [4Fe-4S] clusters and copurifies with S-adenosyl-L-methionine. Incorporation of deuterium from D2O into 5’-deoxyadenosine, the cleavage product of S-adenosyl-L-methionine, coupled with molecular docking experiments suggests that the HydE substrate contains a thiol functional group. This information, along with HydE sequence similarity and genome context networks, have allowed us to redefine the presumed mechanism for HydE away from BioB-like sulfur insertion chemistry; these data collectively suggest that the source of the sulfur atoms in the dithiomethylamine bridge of the H-cluster are likely derived from HydE’s thiol containing substrate.
[FeFe]-hydrogenases are nature’s most prolific hydrogen catalysts, excelling at facilely interconverting H2 and protons. The catalytic core common to all [FeFe]-hydrogenases is a complex metallocofactor, referred to as the H-cluster, which is composed of a standard [4Fe-4S] cluster linked through a bridging thiolate to a 2Fe subcluster harboring dithiomethylamine, carbon monoxide, and cyanide ligands. This 2Fe subcluster is synthesized and inserted into [FeFe]-hydrogenase by three maturase enzymes denoted HydE, HydF, and HydG. HydE and HydG are radical S-adenosylmethionine enzymes and synthesize the nonprotein ligands of the H-cluster. HydF is a GTPase that functions as a scaffold or carrier for 2Fe subcluster production. Herein, we utilize UV–visible, circular dichroism, and electron paramagnetic resonance spectroscopic studies to establish the existence of redox active [4Fe-4S] and [2Fe-2S] clusters bound to HydF. We have used spectroelectrochemical titrations to assign iron-sulfur cluster midpoint potentials, have shown that HydF purifies with a reduced [2Fe-2S] cluster in the absence of exogenous reducing agents, and have tracked iron–sulfur cluster spectroscopic changes with quaternary structural perturbations. Our results provide an important foundation for understanding the maturation process by defining the iron-sulfur cluster content of HydF prior to its interaction with HydE and HydG. We speculate that the [2Fe-2S] cluster of HydF either acts as a placeholder for HydG-derived Fe(CO)2CN species or serves as a scaffold for 2Fe subcluster assembly.
The organometallic H-cluster at the active site of the [FeFe]-hydrogenase serves as the site of reversible binding and reduction of protons to produce H2. The H-cluster is unique in biology, and consists of a 2Fe subcluster tethered to a typical [4Fe-4S] cluster by a single cysteine ligand. The remaining ligands to the 2Fe subcluster include three carbon monoxides, two cyanides, and a dithiomethylamine. This mini-review will focus on the significant advances in recent years in understanding the pathway for H-cluster biosynthesis, as well as the structures, roles, and mechanisms of the three enzymes directly involved.
Known since antiquity, ball lightning is a natural, long-lived plasma-like phenomenon associated with thunderstorms and is not well understood due to its rarity and unpredictability. A recently discovered laboratory phenomenon with striking similarity to ball lightning is observed when a high-power spark is discharged from a cathode protruding from a grounded electrolyte solution. Whereas several investigations of these long-lived plasmas have been reported over the past decade, the underlying chemical and physical processes are still unknown. The present work attempts to gain further insight into this phenomenon by examining the effect of electrolyte pH on the plasmoid and observing the chemical and physical structure of the plasmoid using high-speed schlieren videography and FTIR absorption spectroscopy. The results indicate that the lifetime and size of the plasmoid slightly increase as the pH of isoohmic electrolyte solutions deviate from neutrality. The observed absorption spectra of the plasmoids exhibit absorption cross sections in the 620-700, 1500-1560, 2280-2390, and 3650-4000 cm(-1) ranges, the last attributed to the presence of water clusters. Finally, schlieren images revealed a single, sharp density gradient at the boundary layer of the top and sides of the expanding ball-shaped plasmoid, and turbulent mixing below the ball.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.