Performance based methodologies are becoming increasingly common in fire safety due to the inability of prescriptive codes to account for every architectural feature. Fire Sprinkler suppression systems have long been used to provide property protection and enhance life safety. However, very few methodologies exist to account for the impact of sprinkler sprays on fire scenarios. Current methods are extremely complicated and difficult to use as an engineering tool for performance based design. Twenty-four full scale fire tests were conducted at Tyco Fire Suppression & Building Products Global Technology Center to determine a simple method for accounting for the impact of a single residential sprinkler on fire induced doorway flows. It was found that a spraying sprinkler reduced the mass flows at the doorway while maintaining two stratified layers away from the sprinkler spray. The mass flow reduction was consistent and could be predicted through the use of a simple buoyancy based equation. The current study suggests that the buoyancy equation can be altered through the use of a constant cooling coefficient (equal to 0.84 for a Tyco LFII (TY2234) sprinkler) based on the test results reported in this paper. This study is a proof of concept and the results suggest the methodology can be applicable to similar situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.