Consuming a high fat diet can lead to many negative health consequences, such as obesity, insulin resistance, and enhanced sensitivity to drugs acting on dopamine systems. It has recently been demonstrated that dietary supplementation with fish oil, which is rich in omega-3 fatty acids, can prevent this high fat diet-induced enhanced sensitivity to dopaminergic drugs from developing. However, it is not known if fish oil supplementation can reverse this effect once it has already developed. In order to test the hypothesis that dietary supplementation with fish oil will reverse high fat diet-induced enhanced sensitivity to quinpirole, a dopamine D₂/D₃ receptor agonist, male Sprague-Dawley rats were fed either standard chow (17% kcal from fat), high fat chow (60% kcal from fat), standard chow or high fat chow supplemented with 20% (w/w) fish oil. Body weight, food consumption, and sensitivity to quinpirole-induced (0.0032–0.32 mg/kg) penile erections were examined throughout the course of the experiment. Eating high fat chow enhanced sensitivity of rats to quinpirole-induced penile erections (i.e., resulted in a leftward shift of the ascending limb of the dose-response curve). Dietary supplementation with fish oil successfully treated this effect, since dose-response curves were not different for rats eating standard chow and rats eating high fat chow with fish oil. These results suggest that in addition to preventing the negative health consequences of eating a high fat diet, fish oil can also reverse some of these consequences once they have developed.
Rats eating high fat chow are more sensitive to the behavioral effects of dopaminergic drugs, including methamphetamine and the dopamine D2/D3 receptor agonist quinpirole, than rats eating standard chow. However, limited work has explored possible sex differences regarding the impact of diet on drug sensitivity. It is also unknown if eating high fat chow enhances sensitivity of rats to other dopamine (e.g., D1) receptor agonists. To explore these possibilities, male and female Sprague Dawley rats eating standard laboratory chow (17% kcal from fat) or high fat chow (60% kcal from fat) were tested once per week for 6 weeks with dopamine D1 receptor agonist SKF 82958 (0.01-3.2 mg/kg) or methamphetamine (0.1-3.2 mg/kg) using cumulative dosing procedures. Eating high fat chow increased sensitivity of male and female rats to methamphetamine-induced locomotion; however, only female rats eating high fat chow were more sensitive to SKF 82958-induced locomotion. SKF 82958-induced eye blinking was also marginally, though not significantly enhanced among female rats eating high fat chow, but not males. Further, while dopamine D2 receptor expression was significantly increased for SKF 82958-treated rats eating high fat chow regardless of sex, no differences were observed in dopamine D1 receptor expression. Taken together, the present study suggests that while eating high fat chow enhances sensitivity of both sexes to dopaminergic drugs, the mechanism driving this effect might be different for males versus females. These data further demonstrate the importance of studying both sexes simultaneously when investigating factors that influence drug sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.