Utilizing the structure-activity relationship we have developed during the synthesis of the first two generations and mechanism of action studies that point to the interaction of these molecules with the key oncogenic protein Hsp90, we report here the design of 32 new Sansalvamide A derivatives and their synthesis. Our new structures, designed from previously reported potent compounds, were tested for cytotoxicity on the HCT116 colon cancer cell line, and their binding to the biological target was analyzed using computational studies involving blind docking of derivatives using Autodock. Further, we show new evidence that our molecules bind directly to Hsp90 and modulate Hsp90's binding with client proteins. Finally, we demonstrate that we have integrated good ADME properties into a new derivative.
The first critical stage in salamander or teleost appendage regeneration is creation of a specialized epidermis that instructs growth from underlying stump tissue. Here, we performed a forward genetic screen for mutations that impair this process in amputated zebrafish fins. Positional cloning and complementation assays identified a temperature-sensitive allele of the ECM component laminin beta 1a (lamb1a) that blocks fin regeneration. lamb1a, but not its paralog lamb1b, is sharply induced in a subset of epithelial cells after fin amputation, where it is required to establish and maintain a polarized basal epithelial cell layer. These events facilitate expression of the morphogenetic factors shha and lef1, basolateral positioning of phosphorylated Igf1r, patterning of new osteoblasts, and regeneration of bone. By contrast, lamb1a function is dispensable for juvenile body growth, homeostatic adult tissue maintenance, repair of split fins, or renewal of genetically ablated osteoblasts. fgf20a mutations or transgenic Fgf receptor inhibition disrupt lamb1a expression, linking a central growth factor to epithelial maturation during regeneration. Our findings reveal transient induction of lamb1a in epithelial cells as a key, growth factor-guided step in formation of a signaling-competent regeneration epidermis.
The goal of the National Cancer Institute’s (NCI’s) Genomic Data Commons (GDC) is to provide the cancer research community with a data repository of uniformly processed genomic and associated clinical data that enables data sharing and collaborative analysis in the support of precision medicine. The initial GDC dataset include genomic, epigenomic, proteomic, clinical and other data from the NCI TCGA and TARGET programs. Data production for the GDC started in June, 2015 using an OpenStack-based private cloud. By June of 2016, the GDC had analyzed more than 50,000 raw sequencing data inputs, as well as multiple other data types. Using the latest human genome reference build GRCh38, the GDC generated a variety of data types from aligned reads to somatic mutations, gene expression, miRNA expression, DNA methylation status, and copy number variation. In this paper, we describe the pipelines and workflows used to process and harmonize the data in the GDC. The generated data, as well as the original input files from TCGA and TARGET, are available for download and exploratory analysis at the GDC Data Portal and Legacy Archive (https://gdc.cancer.gov/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.