Severe COVID-19 is a biphasic illness, with an initial viral replication phase, followed by a cascade of inflammatory events. Progression to severe disease is predominantly a function of the inflammatory cascade, rather than viral replication per se. This understanding can be effectively translated to changing our approach in managing the disease. The natural course of disease offers us separate windows of specific time intervals to administer either antiviral or immunomodulatory therapy. Instituting the right attack at the right time would maximize the benefit of treatment. This concept must also be factored into studies that assess the efficacy of antivirals and immunomodulatory agents against COVID-19.
The uncontrolled spread of the COVID-19 pandemic has led to the emergence of different SARS-CoV-2 variants across the globe. The ongoing global vaccination strategy to curtail the COVID-19 juggernaut, is threatened by the rapidly spreading Variants of Concern (VOC) and other regional mutants, which are less responsive to neutralization by infection or vaccine derived antibodies. We have previously developed the hiVNT system which detects SARS-CoV-2 neutralizing antibodies in sera in less than three hours. In this study, we modify the hiVNT for rapid qualitative screening of neutralizing antibodies (nAb) to multiple VOC of SARS-CoV-2, and assess the neutralizing efficacy of the BNT162b2 mRNA vaccine on seven epidemiologically relevant SARS-CoV-2 variants. Here we show that the BNT162b2 mRNA vaccine can activate humoral immunity against the major SARS-CoV-2 mutants that are currently in circulation. Albeit a small sample size, we observed that one dose of vaccine was sufficient to elicit a protective humoral response in previously infected people. Using a panel of seven SARS-CoV-2 variants and a single prototype virus, our modified hiVNT would be useful for large-scale community wide testing to detect protective immunity that may confer vaccine/immune passport in the ongoing COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.