We define behavior as a set of actions performed by some actor during a period of time. We consider the problem of analyzing a large collection of behaviors by multiple actors, more specifically, identifying typical behaviors and spotting anomalous behaviors. We propose an approach leveraging topic modeling techniques -LDA (Latent Dirichlet Allocation) Ensembles -to represent categories of typical behaviors by topics that are obtained through topic modeling a behavior collection. When such methods are applied to text in natural languages, the quality of the extracted topics are usually judged based on the semantic relatedness of the terms pertinent to the topics. This criterion, however, is not necessarily applicable to topics extracted from non-textual data, such as action sets, since relationships between actions may not be obvious. We have developed a suite of visual and interactive techniques supporting the construction of an appropriate combination of topics based on other criteria, such as distinctiveness and coverage of the behavior set. Two case studies on analyzing operation behaviors in the security management system and visiting behaviors in an amusement park, and the expert evaluation of the first case study demonstrate the effectiveness of our approach.
The identification of anomalies in temporal data is a core component of numerous research areas such as intrusion detection, fault prevention, genomics and fraud detection. This article provides an experimental comparison of the novelty detection problem applied to discrete sequences. The objective of this study is to identify which state-of-the-art methods are efficient and appropriate candidates for a given use case. These recommendations rely on extensive novelty detection experiments based on a variety of public datasets in addition to novel industrial datasets. We also perform thorough scalability and memory usage tests resulting in new supplementary insights of the methods' performance, key selection criterion to solve problems relying on large volumes of data and to meet the expectations of applications subject to strict response time constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.