We adapt the vector field method of Klainerman to the study of relativistic transport equations. First, we prove robust decay estimates for velocity averages of solutions to the relativistic massive and massless transport equations, without any compact support requirements (in x or v) for the distribution functions. In the second part of this article, we apply our method to the study of the massive and massless Vlasov-Nordström systems. In the massive case, we prove global existence and (almost) optimal decay estimates for solutions in dimensions n ≥ 4 under some smallness assumptions. In the massless case, the system decouples and we prove optimal decay estimates for the solutions in dimensions n ≥ 4 for arbitrarily large data, and in dimension 3 under some smallness assumptions, exploiting a certain form of the null condition satisfied by the equations. The 3-dimensional massive case requires an extension of our method and will be treated in future work.
The propagation of electromagnetic waves in vacuum is often described within the geometrical optics approximation, which predicts that wave rays follow null geodesics. However, this model is valid only in the limit of infinitely high frequencies. At large but finite frequencies, diffraction can still be negligible, but the ray dynamics becomes affected by the evolution of the wave polarization. Hence, rays can deviate from null geodesics, which is known as the gravitational spin Hall effect of light. In the literature, this effect has been calculated ad hoc for a number of special cases, but no general description has been proposed. Here, we present a covariant Wentzel-Kramers-Brillouin analysis from first principles for the propagation of light in arbitrary curved spacetimes. We obtain polarization-dependent ray equations describing the gravitational spin Hall effect of light. We also present numerical examples of polarization-dependent ray dynamics in the Schwarzschild spacetime, and the magnitude of the effect is briefly discussed. The analysis reported here is analogous to that of the spin Hall effect of light in inhomogeneous media, which has been experimentally verified.
Les Annales de l'institut Fourier sont membres du Centre Mersenne pour l'édition scienti que ouverte www.centre-mersenne.org Ann. Inst. Fourier, Grenoble Article à paraître Mis en ligne le 7 juin 2021.
THE CONFORMAL EINSTEIN FIELD EQUATIONS WITH MASSLESS VLASOV MATTER by Jérémie JOUDIOUX, Maximilian THALLER & Juan A. VALIENTE KROON (*)Abstract. -We prove the stability of de Sitter space-time as a solution to the Einstein-Vlasov system with massless particles. The semi-global stability of Minkowski space-time is also addressed. The proof relies on conformal techniques, namely Friedrich's conformal Einstein field equations. We exploit the conformal invariance of the massless Vlasov equation on the cotangent bundle and adapt Kato's local existence theorem for symmetric hyperbolic systems to prove a long enough time of existence for solutions of the evolution system implied by the Vlasov equation and the conformal Einstein field equations.Résumé. -Nous prouvons la stabilité de l'espace-temps de de Sitter, solution du système d'Einstein-Vlasov avec des particules sans masse. Nous considérons également la stabilité semi-globale de l'espace-temps de Minkowski pour le même système. La preuve de la stabilité repose sur l'usage de techniques conformes, et plus précisément les équations de champs conformes d'Einstein introduites par Friedrich. Nous exploitons l'invariance conforme de l'équation de Vlasov sans masse et adaptons le résultat d'existence locale en temps suffisamment long de Kato au système d'Einstein-Vlasov.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.