Low temperatures can disturb the development, growth and geographic distribution of plants, particularly cold-sensitive plants in the Mediterranean area, where temperatures can reach seasonally low levels. In citrus crops, scion/rootstock combinations are used to improve fruit production and quality, and increase tolerance to biotic and abiotic stresses. In the last decade, several studies have shown that tetraploid citrus seedlings or rootstocks are more tolerant to abiotic stress than their respective diploid. The objective of this study was to test whether the use of tetraploid rootstocks can improve the chilling tolerance of the scion. We compared physiological and biochemical responses to low seasonal temperatures of common Clementine (Citrus sinensis Osb.×Poncirus trifoliata L. Raf.) grafted on diploid and tetraploid Carrizo citrange rootstocks, named C/2xCC and C/4xCC, respectively. During the coldest months, C/4xCC showed a smaller decrease in net photosynthesis (Pn), stomatal conductance (G), chlorophyll fluorescence (F/F), and starch levels, and lower levels of malondialdehyde and electrolyte leakage than C/2xCC. Specific activities of catalase (CAT), ascorbate peroxidase (APX) and dehydroascorbate reductase (DHAR) were higher in C/4xCC during the cold period, whereas chlorophyll, proline, ascorbate and hydrogen peroxide (HO) levels and superoxide dismutase (SOD) activity did not vary significantly between C/4xCC and C/2xCC throughout the study period. Taken together, these results demonstrate that tetraploid Carrizo citrange rootstock improves the chilling tolerance of common clementine (scion) thanks to a part of the antioxidant system.
Synthetic polyploids have been extensively studied for breeding in the last decade. However, the use of such genotypes at the agronomical level is still limited. Polyploidization is known to modify certain plant phenotypes, while leaving most of the fundamental characteristics apparently untouched. For this reason, polyploid breeding can be very useful for improving specific traits of crop varieties, such as quality, yield, or environmental adaptation. Nevertheless, the mechanisms that underlie polyploidy-induced novelty remain poorly understood. Ploidy-induced phenotypes might also include some undesired effects that need to be considered. In the case of grafted or composite crops, benefits can be provided both by the rootstock's adaptation to the soil conditions and by the scion's excellent yield and quality. Thus, grafted crops provide an extraordinary opportunity to exploit artificial polyploidy, as the effects can be independently applied and explored at the root and/or scion level, increasing the chances of finding successful combinations. The use of synthetic tetraploid (4x) rootstocks may enhance adaptation to biotic and abiotic stresses in perennial crops such as apple or citrus. However, their use in commercial production is still very limited. Here, we will review the current and prospective use of artificial polyploidy for rootstock and scion improvement and the implications of their combination. The aim is to provide insight into the methods used to generate and select artificial polyploids and their limitations, the effects of polyploidy on crop phenotype (anatomy, function, quality, yield, and adaptation to stresses) and their potential agronomic relevance as scions or rootstocks in the context of climate change.
Low temperatures during winter are one of the main constraints for citrus crop. Polyploid rootstocks can be used for improving tolerance to abiotic stresses, such as cold stress. Because the produced fruit are seedless, using triploid scions is one of the most promising approaches to satisfy consumer expectations. In this study, we evaluated how the triploidy of new citrus varieties influences their sensitivity to natural chilling temperatures. We compared their behavior to that of diploid citrus, their parents (Fortune mandarin and Ellendale tangor), and one diploid clementine tree, as reference, focusing on photosynthesis parameters, oxidative metabolism, and volatile organic compounds (VOC) in leaves. Triploid varieties appeared to be more tolerant than diploid ones to natural low temperatures, as evidenced by better photosynthetic properties (P net , g s , F v /F m , ETR/P net ratio), without relying on a better antioxidant system. The VOC levels were not influenced by chilling temperatures; however, they were affected by the ploidy level and atypical chemotypes were found in triploid varieties, with the highest proportions of E-β-ocimene and linalool. Such compounds may contribute to better stress adaptation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.