Phylodynamic models generally aim at jointly inferring phylogenetic relationships, model parameters, and more recently, the number of lineages through time, based on molecular sequence data. In the fields of epidemiology and macroevolution, these models can be used to estimate, respectively, the past number of infected individuals (prevalence) or the past number of species (paleodiversity) through time. Recent years have seen the development of “total-evidence” analyses, which combine molecular and morphological data from extant and past sampled individuals in a unified Bayesian inference framework. Even sampled individuals characterized only by their sampling time, that is, lacking morphological and molecular data, which we call occurrences, provide invaluable information to estimate the past number of lineages. Here, we present new methodological developments around the fossilized birth–death process enabling us to (i) incorporate occurrence data in the likelihood function; (ii) consider piecewise-constant birth, death, and sampling rates; and (iii) estimate the past number of lineages, with or without knowledge of the underlying tree. We implement our method in the RevBayes software environment, enabling its use along with a large set of models of molecular and morphological evolution, and validate the inference workflow using simulations under a wide range of conditions. We finally illustrate our new implementation using two empirical data sets stemming from the fields of epidemiology and macroevolution. In epidemiology, we infer the prevalence of the coronavirus disease 2019 outbreak on the Diamond Princess ship, by taking into account jointly the case count record (occurrences) along with viral sequences for a fraction of infected individuals. In macroevolution, we infer the diversity trajectory of cetaceans using molecular and morphological data from extant taxa, morphological data from fossils, as well as numerous fossil occurrences. The joint modeling of occurrences and trees holds the promise to further bridge the gap between traditional epidemiology and pathogen genomics, as well as paleontology and molecular phylogenetics. [Birth–death model; epidemiology; fossils; macroevolution; occurrences; phylogenetics; skyline.]
Phylodynamic models generally aim at jointly inferring phylogenetic relationships, model parameters, and more recently, population size through time for clades of interest, based on molecular sequence data. In the fields of epidemiology and macroevolution these models can be used to estimate, respectively, the past number of infected individuals (prevalence) or the past number of species (paleodiversity) through time. Recent years have seen the development of "total-evidence" analyses, which combine molecular and morphological data from extant and past sampled individuals in a unified Bayesian inference framework. Even sampled individuals characterized only by their sampling time, i.e. lacking morphological and molecular data, which we call occurrences, provide invaluable information to reconstruct past population sizes. Here, we present new methodological developments around the Fossilized Birth-Death Process enabling us to (i) efficiently incorporate occurrence data while remaining computationally tractable and scalable; (ii) consider piecewise-constant birth, death and sampling rates; and (iii) reconstruct past population sizes, with or without knowledge of the underlying tree. We implement our method in the RevBayes software environment, enabling its use along with a large set of models of molecular and morphological evolution, and validate the inference workflow using simulations under a wide range of conditions. We finally illustrate our new implementation using two empirical datasets stemming from the fields of epidemiology and macroevolution. In epidemiology, we apply our model to the Covid-19 outbreak on the Diamond Princess ship. We infer the total prevalence throughout the outbreak, by taking into account jointly the case count record (occurrences) along with viral sequences for a fraction of infected individuals. In macroevolution, we present an empirical case study of cetaceans. We infer the diversity trajectory using molecular and morphological data from extant taxa, morphological data from fossils, as well as numerous fossil occurrences. Our case studies highlight that the advances we present allow us to further bridge the gap between between epidemiology and pathogen genomics, as well as paleontology and molecular phylogenetics.
Biotic interactions drive multitrophic species community assembly. Yet, explicitly incorporating this process in species distribution models (SDMs) is particularly challenging, even when biotic interactions are known. Here, we propose a framework that combines knowledge of trophic interactions with Bayesian structural equation models that model each species as a function of its prey or predators and environmental conditions. We tested and validated our framework on realistic simulated communities from different theoretical models. We showed that our framework improves the inference of both species’ fundamental and realized niches compared to classical SDMs (mean performances increased by 11% and 4% respectively), especially for species with strong biotic control, thus increasing model predictive performance (up to 99% and 70% improvement, respectively). Our framework can easily integrate various SDM extensions (e.g., occupancy models) and algorithms, and stands out as a novel solution for modeling multitrophic community distributions when trophic interactions are known or assumed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.