Recent studies have shown that expression of the Staphylococcus aureus lrgAB operon inhibits murein hydrolase activity and decreases sensitivity to penicillin-induced killing. It was proposed that the lrgAB gene products function in a manner analogous to an antiholin, inhibiting a putative holin from transporting murein hydrolases out of the cell. In the present study the cidAB operon was identified and characterized based on the similarity of the cidA and cidB gene products to the products of the lrgAB operon. Zymographic and quantitative analyses of murein hydrolase activity revealed that mutation of the cidA gene results in decreased extracellular murein hydrolase activity compared to that of S. aureus RN6390, the parental strain. Complementation of cidA expression restored the wild-type phenotype, indicating that expression of the cidAB operon has a positive influence on extracellular murein hydrolase activity. The cidA mutant also displayed a significant decrease in sensitivity to the killing effects of penicillin. However, complementation of the cidA defect did not restore penicillin sensitivity to wild-type levels. Reverse transcriptase PCR also revealed that cidAB is maximally expressed during early exponential growth, opposite of what was previously observed for lrgAB expression. Based on these results, we propose that the cidAB operon encodes the holin-like counterpart of the lrgAB operon and acts in a manner opposite from that of lrgAB by increasing extracellular murein hydrolase activity and increasing sensitivity to penicillin-induced killing.
Infection of epithelial cells by Cryptosporidium parvum triggers a variety of host-cell innate and adaptive immune responses including release of cytokines/chemokines and up-regulation of antimicrobial peptides. The mechanisms that trigger these host-cell responses are unclear. Thus, we evaluated the role of TLRs in host-cell responses during C. parvum infection of cultured human biliary epithelia (i.e., cholangiocytes). We found that normal human cholangiocytes express all known TLRs. C. parvum infection of cultured cholangiocytes induces the selective recruitment of TLR2 and TLR4 to the infection sites. Activation of several downstream effectors of TLRs including IL-1R-associated kinase, p-38, and NF-κB was detected in infected cells. Transfection of cholangiocytes with dominant-negative mutants of TLR2 and TLR4, as well as the adaptor molecule myeloid differentiation protein 88 (MyD88), inhibited C. parvum-induced activation of IL-1R-associated kinase, p-38, and NF-κB. Short-interfering RNA to TLR2, TLR4, and MyD88 also blocked C. parvum-induced NF-κB activation. Moreover, C. parvum selectively up-regulated human β-defensin-2 in directly infected cells, and inhibition of TLR2 and TLR4 signals or NF-κB activation were each associated with a reduction of C. parvum-induced human β-defensin-2 expression. A significantly higher number of parasites were detected in cells transfected with a MyD88 dominant-negative mutant than in the control cells at 48–96 h after initial exposure to parasites, suggesting MyD88-deficient cells were more susceptible to infection. These findings demonstrate that cholangiocytes express a variety of TLRs, and suggest that TLR2 and TLR4 mediate cholangiocyte defense responses to C. parvum via activation of NF-κB.
The Staphylococcus aureus lrg and cid operons encode homologous proteins that regulate extracellular murein hydrolase activity and penicillin tolerance in a diametrically opposing manner. Although their specific regulatory functions remain unknown, it has been postulated that the functions of CidA and LrgA are analogous to those of bacteriophage holins and antiholins, respectively, and that these proteins serve as molecular control elements of bacterial programmed cell death. Although these studies demonstrated that cidBC transcription is abundant in B -proficient strains, cidABC transcription was only minimally expressed under standard growth conditions. In this study, we demonstrate that cidABC and lrgAB transcription in the clinical isolate UAMS-1 is induced by growth in the presence of 35 mM glucose and that this enhances murein hydrolase activity and decreases tolerance to vancomycin and rifampin. The effect of glucose on murein hydrolase activity was not observed in the cidA mutant, indicating that the induction of this activity was dependent on enhanced cidABC expression. Furthermore, we demonstrate that the effects of glucose on cidABC and lrgAB transcription are mediated by the generation of acetic acid produced by the metabolism of this and other carbon sources. These results shed new light on the control of the S. aureus cidABC and lrgAB genes and demonstrate that these operons, as well as murein hydrolase activity and antibiotic tolerance, are responsive to carbohydrate metabolism.Recent work in our laboratory has identified and characterized the cid and lrg operons of Staphylococcus aureus, whose gene products affect extracellular murein hydrolase activity and penicillin tolerance (11,22,35). Disruption of the lrg operon in the laboratory strain RN6390 increased extracellular murein hydrolase activity and decreased penicillin tolerance, whereas disruption of the cid operon decreased extracellular murein hydrolase activity and increased penicillin tolerance (22,35). The precise mechanism by which the Lrg and Cid proteins regulate these two processes is currently unknown. However, the lrgA and cidA gene products display structural similarities to the bacteriophage holin family of proteins, which are known regulators of murein hydrolase activity and ultimately control the timing and onset of bacteriophage-induced cell lysis (4,11,22,35). Based on these similarities, along with the phenotypic consequences of the cid and lrg mutations, it has been proposed that the cidA and lrgA gene products regulate murein hydrolase activity in a manner analogous to those of holins and anti holins, respectively (4, 34). Furthermore, it has been recently suggested that the lrg and cid gene products are molecular control elements involved in the regulation of programmed cell death (PCD) in S. aureus (3,34).To better understand the role of the lrg and cid gene products in modulating murein hydrolase activity and antibioticinduced killing, recent studies have been performed to examine the environmental factors that influen...
Botulinum neurotoxin serotype A (BoNT/A), a potent therapeutic used to treat various disorders, inhibits vesicular neurotransmitter exocytosis by cleaving SNAP25. Development of cell-based potency assays (CBPAs) to assess the biological function of BoNT/A have been challenging because of its potency. CBPAs can evaluate the key steps of BoNT action: receptor binding, internalization-translocation, and catalytic activity; and therefore could replace the current mouse bioassay. Primary neurons possess appropriate sensitivity to develop potential replacement assays but those potency assays are difficult to perform and validate. This report describes a CBPA utilizing differentiated human neuroblastoma SiMa cells and a sandwich ELISA that measures BoNT/A-dependent intracellular increase of cleaved SNAP25. Assay sensitivity is similar to the mouse bioassay and measures neurotoxin biological activity in bulk drug substance and BOTOX® product (onabotulinumtoxinA). Validation of a version of this CBPA in a Quality Control laboratory has led to FDA, Health Canada, and European Union approval for potency testing of BOTOX®, BOTOX® Cosmetic, and Vistabel®. Moreover, we also developed and optimized a BoNT/A CBPA screening assay that can be used for the discovery of novel BoNT/A inhibitors to treat human disease.
The apical organelles in apicomplexan parasites are characteristic secretory vesicles containing complex mixtures of molecules. While apical organelle discharge has been demonstrated to be involved in the cellular invasion of some apicomplexan parasites, including Toxoplasma gondii and Plasmodium spp., the mechanisms of apical organelle discharge by Cryptosporidium parvum sporozoites and its role in host cell invasion are unclear. Here we show that the discharge of C. parvum apical organelles occurs in a temperature-dependent fashion. The inhibition of parasite actin and tubulin polymerization by cytochalasin D and colchicines, respectively, inhibited parasite apical organelle discharge. Chelation of the parasite's intracellular calcium also inhibited apical organelle discharge, and this process was partially reversed by raising the intracellular calcium concentration by use of the ionophore A23187. The inhibition of parasite cytoskeleton polymerization by cytochalasin D and colchicine and the depletion of intracellular calcium also decreased the gliding motility of C. parvum sporozoites. Importantly, the inhibition of apical organelle discharge by C. parvum sporozoites blocked parasite invasion of, but not attachment to, host cells (i.e., cultured human cholangiocytes). Moreover, the translocation of a parasite protein, CP2, to the host cell membrane at the region of the host cell-parasite interface was detected; an antibody to CP2 decreased the C. parvum invasion of cholangiocytes. These data demonstrate that the discharge of C. parvum sporozoite apical organelle contents occurs and that it is temperature, intracellular calcium, and cytoskeleton dependent and required for host cell invasion, confirming that apical organelles play a central role in C. parvum entry into host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.