We investigate how the shapes and angular momenta of galaxy and group mass dark matter halos in a ΛCDM N -body simulation are correlated internally, and how they are aligned with respect to the location and properties of surrounding halos. We explore these relationships down to halos of much lower mass (10 11 h −1 M ⊙ ) than previous studies. The halos are triaxial, with c/a ratios of 0.6 ± 0.1 and a mean two-dimensional projected ellipticity of e = 0.24. More massive halos are more flattened. The axis ratios rise out to 0.6 r vir , beyond which they drop. The principal axes, in particular the minor axes, are very well aligned within 0.6 r vir . High mass halos show particularly strong internal alignment. The angular momentum vectors are also reasonably well aligned except between the very outermost and very innermost regions of the halo. The angular momentum vectors tend to align with the minor axes, with a mean misalignment of ∼ 25 • , and lie perpendicular to the major and intermediate axes. The properties of a halo at 0.4 r vir are quite characteristic of the properties at most other radii within the halo. There is a very strong tendency for the minor axes of halos to lie perpendicular to large scale filaments, and a much weaker tendency for the major axes to lie along the filaments. This alignment extends to much larger separations for group and cluster mass halos than for galaxy mass halos. As a consequence, the intrinsic alignments of galaxies are likely weaker than previous predictions, which were based on the shapes of cluster mass halos. The angular momenta of the highest concentration halos tend to point toward other halos. The angular momenta of galaxy mass halos point parallel to filaments, while those of group and cluster mass halos show a very strong tendency to point perpendicular to the filaments. This suggests that group and cluster mass halos acquire most of their angular momentum from major mergers along filaments, while the accretion history of mass and angular momentum onto galaxy mass halos has been smoother.
We present the first data release of the Radial Velocity Experiment ( RAVE), an ambitious spectroscopic survey to measure radial velocities and stellar atmosphere parameters (temperature, metallicity, and surface gravity) of up to one million stars using the Six Degree Field multiobject spectrograph on the 1.2 m UK Schmidt Telescope of the Anglo-Australian Observatory. The RAVE program started in 2003, obtaining medium-resolution spectra (median R ¼ 7500) in the Ca-triplet region (8410-8795 8) for southern hemisphere stars drawn from the Tycho-2 and SuperCOSMOS catalogs, in the magnitude range 9 < I < 12. The first data release is described in this paper and contains radial velocities for 24,748 individual stars (25,274 measurements when including reobservations). Those data were obtained on 67 nights between 2003 April 11 and 2004 April 3. The total sky coverage within this data release is $4760 deg 2 . The average signal-to-noise ratio of the observed spectra is 29.5, and 80% of the radial velocities have uncertainties better than 3.4 km s À1 . Combining internal errors and zero-point errors, the mode is found to be 2 km s À1 . Repeat observations are used to assess the stability of our radial velocity solution, resulting in a variance of 2.8 km s À1 . We demonstrate that the radial velocities derived for the first data set do not show any systematic trend with color or signal-to-noise ratio. The RAVE radial velocities are complemented in the data release with proper motions from Starnet 2.0, Tycho-2, and SuperCOSMOS, in addition to photometric data from the major optical and infrared catalogs (Tycho-2, USNO-B, DENIS, and the Two Micron All Sky Survey). The data release can be accessed via the RAVE Web site.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.