The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence has an influence on the position of nucleosomes on genomes, although other factors are also implicated, such as ATP-dependent remodelers or competition of the nucleosome with DNA binding proteins. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
In human and other metazoans, the determinants of replication origin location and strength are still elusive. Origins are licensed in G1 phase and fired in S phase of the cell cycle, respectively. It is debated which of these two temporally separate steps determines origin efficiency. Experiments can independently profile mean replication timing (MRT) and replication fork directionality (RFD) genome-wide. Such profiles contain information on multiple origins’ properties and on fork speed. Due to possible origin inactivation by passive replication, however, observed and intrinsic origin efficiencies can markedly differ. Thus, there is a need for methods to infer intrinsic from observed origin efficiency, which is context-dependent. Here, we show that MRT and RFD data are highly consistent with each other but contain information at different spatial scales. Using neural networks, we infer an origin licensing landscape that, when inserted in an appropriate simulation framework, jointly predicts MRT and RFD data with unprecedented precision and underlies the importance of dispersive origin firing. We furthermore uncover an analytical formula that predicts intrinsic from observed origin efficiency combined with MRT data. Comparison of inferred intrinsic origin efficiencies with experimental profiles of licensed origins (ORC, MCM) and actual initiation events (Bubble-seq, SNS-seq, OK-seq, ORM) show that intrinsic origin efficiency is not solely determined by licensing efficiency. Thus, human replication origin efficiency is set at both the origin licensing and firing steps.
The nucleosome is a major modulator of DNA accessibility to other cellular factors. Nucleosome positioning has a critical importance in regulating cell processes such as transcription, replication, recombination or DNA repair. The DNA sequence is a major factor influencing the position of nucleosomes on genomes. Different sequence motifs can promote or inhibit the nucleosome formation, thus influencing the accessibility to the DNA. Sequence-encoded nucleosome positioning having functional consequences on cell processes can then be selected or counter-selected during evolution. We review the interplay between sequence evolution and nucleosome positioning evolution. We first focus on the different ways to encode nucleosome positions in the DNA sequence, and to which extent these mechanisms are responsible of genome-wide nucleosome positioning in vivo. Then, we discuss the findings about selection of sequences for their nucleosomal properties. Finally, we illustrate how the nucleosome can directly influence sequence evolution through its interactions with DNA damage and repair mechanisms. This review aims to provide an overview of the mutual influence of sequence evolution and nucleosome positioning evolution, possibly leading to complex evolutionary dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.