A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.
Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (~45%) of the 1,101 essential yeast genes, with ~30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.
BackgroundIntrinsically disordered regions are widespread, especially in proteomes of higher eukaryotes. Recently, protein disorder has been associated with a wide variety of cellular processes and has been implicated in several human diseases. Despite its apparent functional importance, the sheer range of different roles played by protein disorder often makes its exact contribution difficult to interpret.ResultsWe attempt to better understand the different roles of disorder using a novel analysis that leverages both comparative genomics and genetic interactions. Strikingly, we find that disorder can be partitioned into three biologically distinct phenomena: regions where disorder is conserved but with quickly evolving amino acid sequences (flexible disorder); regions of conserved disorder with also highly conserved amino acid sequences (constrained disorder); and, lastly, non-conserved disorder. Flexible disorder bears many of the characteristics commonly attributed to disorder and is associated with signaling pathways and multi-functionality. Conversely, constrained disorder has markedly different functional attributes and is involved in RNA binding and protein chaperones. Finally, non-conserved disorder lacks clear functional hallmarks based on our analysis.ConclusionsOur new perspective on protein disorder clarifies a variety of previous results by putting them into a systematic framework. Moreover, the clear and distinct functional association of flexible and constrained disorder will allow for new approaches and more specific algorithms for disorder detection in a functional context. Finally, in flexible disordered regions, we demonstrate clear evolutionary selection of protein disorder with little selection on primary structure, which has important implications for sequence-based studies of protein structure and evolution.
Duplicate genes show significantly fewer interactions than singleton genes, and functionally similar duplicates can exhibit dissimilar profiles because common interactions are ‘hidden' due to buffering.Genetic interaction profiles provide insights into evolutionary mechanisms of duplicate retention by distinguishing duplicates under dosage selection from those retained because of some divergence in function.The genetic interactions of duplicate genes evolve in an extremely asymmetric way and the directionality of this asymmetry correlates well with other evolutionary properties of duplicate genes.Genetic interaction profiles can be used to elucidate the divergent function of specific duplicate pairs.
Genetic interactions provide a powerful perspective into gene function, but our knowledge of the specific mechanisms that give rise to these interactions is still relatively limited. The availability of a global genetic interaction map in Saccharomyces cerevisiae, covering~30% of all possible double mutant combinations, provides an unprecedented opportunity for an unbiased assessment of the native structure within genetic interaction networks and how it relates to gene function and modular organization. Toward this end, we developed a data mining approach to exhaustively discover all block structures within this network, which allowed for its complete modular decomposition. The resulting modular structures revealed the importance of the context of individual genetic interactions in their interpretation and revealed distinct trends among genetic interaction hubs as well as insights into the evolution of duplicate genes. Block membership also revealed a surprising degree of multifunctionality across the yeast genome and enabled a novel association of VIP1 and IPK1 with DNA replication and repair, which is supported by experimental evidence. Our modular decomposition also provided a basis for testing the between-pathway model of negative genetic interactions and within-pathway model of positive genetic interactions. While we find that most modular structures involving negative genetic interactions fit the betweenpathway model, we found that current models for positive genetic interactions fail to explain 80% of the modular structures detected. We also find differences between the modular structures of essential and nonessential genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.