The outbreak of COVID-19 has spread rapidly across the globe, greatly affecting how humans as a whole interact, work and go about their daily life. One of the key pieces of personal protective equipment (PPE) that is being utilised to return to the norm is the face mask or respirator. In this review we aim to examine face masks and respirators, looking at the current materials in use and possible future innovations that will enhance their protection against SARS-CoV-2. Previous studies concluded that cotton, natural silk and chiffon could provide above 50% efficiency. In addition, it was found that cotton quilt with a highly tangled fibrous nature provides efficient filtration in the small particle size range. Novel designs by employing various filter materials such as nanofibres, silver nanoparticles, and nano-webs on the filter surfaces to induce antimicrobial properties are also discussed in detail. Modification of N95/N99 masks to provide additional filtration of air and to deactivate the pathogens using various technologies such as low- temperature plasma is reviewed. Legislative guidelines for selecting and wearing facial protection are also discussed. The feasibility of reusing these masks will be examined as well as a discussion on the modelling of mask use and the impact wearing them can have. The use of Artificial Intelligence (AI) models and its applications to minimise or prevent the spread of the virus using face masks and respirators is also addressed. It is concluded that a significant amount of research is required for the development of highly efficient, reusable, anti-viral and thermally regulated face masks and respirators.
Summary1. The population density and age structure of two species of heather psyllid Strophingia ericae and Strophingia cinereae, feeding on Calluna vulgaris and Erica cinerea, respectively, were sampled using standardized methods at locations throughout Britain. Locations were chosen to represent the full latitudinal and altitudinal range of the host plants. 2. The paper explains how spatial variation in thermal environment, insect life-history characteristics and physiology, and plant distribution, interact to provide the mechanisms that determine the range and abundance of Strophingia spp. 3. Strophingia ericae and S. cinereae, despite the similarity in the spatial distribution patterns of their host plants within Britain, display strongly contrasting geographical ranges and corresponding life-history strategies. Strophingia ericae is found on its host plant throughout Britain but S. cinereae is restricted to low elevation sites south of the Mersey-Humber line and occupies only part of the latitudinal and altitudinal range of its host plant. There is no evidence to suggest that S. ericae has reached its potential altitudinal or latitudinal limit in the UK, even though its host plant appears to reach its altitudinal limit. 4. There was little difference in the ability of the two Strophingia spp. to survive shortterm exposure to temperatures as low as -15°C and low winter temperatures probably do not limit distribution in S. cinereae. 5. Population density of S. ericae was not related to altitude but showed a weak correlation with latitude. The spread of larval instars present at a site, measured as an index of instar homogeneity, was significantly correlated with a range of temperature related variables, of which May mean temperature and length of growing season above 3°C (calculated using the Lennon and Turner climatic model) were the most significant. Factor analysis did not improve the level of correlation significantly above those obtained for single climatic variables. The data confirmed that S. ericae has a 1 year life cycle at the lowest elevations and a 2 year life cycle at the higher elevations. However, there was no evidence, as previously suggested, for an abrupt change from a one to a 2 year life cycle in S. ericae with increasing altitudes or latitudes. 6. By contrast with S. ericae, S. cinereae had an obligatory 1 year life cycle, its population decreased with altitude and the index of instar homogeneity showed little correlation with single temperature variables. Moreover, it occupied only part of the range of its host plant and its spatial distribution in the UK could be predicted with 96% accuracy using selected variables in discriminant analysis. 7. The life histories of the congeneric heather psyllids reflect adaptations that allow them to exploit host plants with different distributions in climatic and thereby geographical space. Strophingia ericae has the flexible life history that enables it to exploit C. vulgaris throughout its European boreal temperate range. Strophingia cinereae has a ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.