Bacteria within the family Rhizobiaceae are distinguished by their ability to infect higher plants. The cell envelope carbohydrates of these bacteria are believed to be involved in the plant infection process. One class of cell envelope carbohydrate, the cyclic beta-1,2-glucans, is synthesized by species within two genera of this family, Agrobacterium and Rhizobium. In contrast, species of the genus Bradyrhizobium, a third genus within this family, appear to lack the capacity for cyclic beta-1,2-glucan biosynthesis. Instead, these bacteria synthesize cyclic glucans containing beta-1,6 and beta-1,3 glycosidic linkages (K.J. Miller, R.S. Gore, R. Johnson, A.J. Benesi, and V.N. Reinhold, J. Bacteriol. 172:136-142, 1990). We now report the initial characterization of a novel membrane-bound glucosyltransferase activity from Bradyrhizobium japonicum USDA 110. Analysis of the product of this glucosyltransferase activity revealed the following: the presence of beta-1,3 and beta-1,6 glycosidic linkages, an average molecular weight of 2,100, and no detectable reducing terminal residues. The glucosyltransferase activity was found to have an apparent Km of 50 microM for for UDP-glucose, and activity was stimulated optimally by Mn2+ ions. On the basis of the structural properties of the in vitro glucan product, it is possible that this membrane-bound glucosyltransferase activity may be responsible for the biosynthesis of cyclic beta-1,6-beta-1,3-glucans by this organism.