Bioenergy has been identified as a key component of climate change mitigation. Therefore, quantifying the net carbon balance of bioenergy feedstocks is crucial for accurate projections of climate mitigation benefits. Switchgrass (Panicum virgatum) has many characteristics of an ideal bioenergy crop with high yields, low maintenance, and deep roots with potential for belowground carbon sequestration. However, the assessments of net annual carbon exchange between switchgrass fields and the atmosphere are rare. Here we present observations of net carbon fluxes in a minimally managed switchgrass field in Virginia (Ameriflux site US‐SB2) over 5 years (3–7 years since establishment). Average annual net ecosystem exchange (NEE) of carbon was near zero (60 g C m−2 year−1) but the net ecosystem carbon balance that includes harvested carbon (HC) was a net source of carbon to the atmosphere (313 g C m−2 year−1). The field alternated between a large and small source of carbon annually, with the interannual variability most strongly correlated with the day of the last frost and the interaction of temperature and precipitation. Overall, the consistent source of carbon to the atmosphere at US‐SB2 differs substantially from other eddy covariance studies that report switchgrass fields to be either neutral or a sink of carbon when accounting for both NEE and HC. This study illustrates that predictions of net carbon climate benefits from bioenergy crops cannot assume that the ecosystem will be a net sink of carbon from the atmosphere. Background climate, management, and land‐use history may determine whether widespread deployment of switchgrass as a bioenergy feedstock results in realized climate change mitigation.
Coastal ecosystems are vulnerable to climate change and have been identified as sources of uncertainty in the global carbon budget. Here we introduce a recently established mesonet of eddy covariance towers in South Carolina and describe the sensor arrays and data workflow used to produce three site-years of flux observations in coastal ecosystems. The tower sites represent tidal salt marsh (US-HB1), mature longleaf pine forest (US-HB2), and longleaf pine restoration (replanted clearcut; US-HB3). Coastal ecosystems remain less represented in climate studies despite their potential to sequester large amounts of carbon. Our goal in publishing this open access dataset is to contribute observations in understudied coastal ecosystems to facilitate synthesis and modeling analyses that advance carbon cycle science.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.