RNA is growing in its importance as a drug target but current approaches used to identify protein-targeting small molecules are ill-suited for RNA. By docking small molecules onto an RNA dynamic ensemble constructed by combining Nuclear Magnetic Resonance (NMR) spectroscopy and computational molecular dynamics, we virtually screened small molecules that target the entire structure landscape of the transactivation response element (TAR) from the human immunodeficiency type 1 virus (HIV-1). We quantitatively predict binding energies for small molecules that bind different RNA conformations and report the de novo discovery of six compounds that bind TAR with near record affinity and inhibit its interaction with a Tat peptide in vitro (Kis = 710 nM–169 μM). One compound binds HIV-1 TAR with exceptional selectivity and inhibits Tat-mediated activation of the HIV-1 long terminal repeat by 81% in T cell lines and HIV replication in an HIV-1 indicator cell line (IC50 ~23.1 μM).
Window of opportunity: Using a single A‐U to G‐C mutation, the local and global dynamic characteristics of the transactivation response element (TAR) RNA was rationally altered over timescales extending up to milliseconds. This procedure allows it to mimic its bound state with the ligand argininamide (ARG). The mutant binds ARG with slightly enhanced affinity using a conformation indistinguishable from the wild‐type sequence.
PIK3CA mutations are common in clinical molecular profiling, yet an effective means to target these cancers has yet to be developed. MTORC1 inhibitors are often used offlabel for patients with PIK3CA mutant cancers with only limited data to support this approach. Here we describe a cohort of patients treated with cancers possessing mutations activating the PI3K signaling cascade with minimal benefit to treatment with the MTORC1 inhibitor everolimus. Previously, we demonstrated that dual PI3K/mTOR inhibition could decrease proliferation, induce differentiation, and result in a treatment response in APC and PIK3CA mutant colorectal cancer. However, reactivation of AKT was identified, indicating that the majority of the benefit may be secondary to MTORC1/2 inhibition. TAK-228, an MTORC1/2 inhibitor, was compared with dual PI3K/mTOR inhibition using BEZ235 in murine colorectal cancer spheroids. A reduction in spheroid size was observed with TAK-228 and BEZ235 (À13% and À14%, respectively) compared with an increase of >200% in control (P < 0.001). These spheroids were resistant to MTORC1 inhibition. In transgenic mice possessing Pik3ca and Apc mutations, BEZ235 and TAK-228 resulted in a median reduction in colon tumor size of 19% and 20%, respectively, with control tumors having a median increase of 18% (P ¼ 0.02 and 0.004, respectively). This response correlated with a decrease in the phosphorylation of 4EBP1 and RPS6. MTORC1/2 inhibition is sufficient to overcome resistance to everolimus and induce a treatment response in PIK3CA mutant colorectal cancers and deserves investigation in clinical trials and in future combination regimens.
Purpose of Review-Treatment options for patients with metastatic colorectal cancer continue to advance as the therapeutic implications of the molecular subtypes of this disease are becoming better understood. DNA sequencing and mismatch repair assessment are now standard of care analyses for patients with metastatic colorectal cancer Thi review describes important aspects of the biology of the clinically relevant molecular subtypes of colorectal cancer based on the current standard of care testing. In addition, the clinical treatment strategies available now and potentially in the future for these colorectal cancer subtypes are discussed. Recent Findings-Currently for metastatic colorectal cancer, standard of care molecular testing is done for mutations in exons 2, 3, and 4 of KRAS and NRAS, and BRAF V600E. Testing for mismatch repair (MMR) deficiency/microsatellite instability (MSI) status is also done. These aberrations are well known to change the clinical prognosis and guide patients' treatment strategies. Additionally, three new subtypes have emerged: PIK3CAmut, HER2 amplified, and NTRK fusions. With the addition of these emerging subtypes, tumor heterogeneity further validates the need to examine mCRC as a heterogeneous disease. Here we present recent exciting data from translational research and clinical trials exhibiting possible distinct treatment strategies for these different subtypes. Summary-Altogether these data show promising treatment strategies for many of these wellknown and emerging subtypes of mCRC. In addition, these also give better clinical prognostic and predictive information. We believe that as molecular testing expands PIK3CA mutation, HER2 amplification, and NTRK fusion molecular testing will be included in standard of care analyses.
Immunotherapy (IO) agents have led to significant improvements in patient outcomes across many tumor types. There have been great efforts to introduce immune checkpoint inhibitors into the treatment paradigm of esophagogastric cancers as well. A number of randomized phase III trials, which will be reviewed here, established the role of these agents in both early-stage and advanced-stage disease. Adjuvant nivolumab is US Food and Drug Administration–approved after neoadjuvant chemoradiation and resection of esophageal and gastroesophageal junction cancers on the basis of the phase III CheckMate 577 trial. In the advanced setting, patients with programmed death receptor ligand-1–positive tumors should be recommended IO in combination with chemotherapy in the first-line setting on the basis of the results from KEYNOTE 590, CheckMate 649, and CheckMate 648. Across trials, chemotherapy continues to play a critical role in the first-line setting and should be offered to all patients who are eligible for systemic therapy, including those with biomarker select tumors. In the later lines of treatment, IO has modest activity, and prior studies have grown largely irrelevant because of the enrollment of IO-naive patients. Similar to other disease types, patients with microsatellite unstable (microsatellite instability high) tumors represent a unique cohort that is more sensitive to IO. However, there are no randomized studies evaluating how best to apply IO in early or advanced stages specifically for the treatment of patients with microsatellite instability high upper GI tumors. Questions remain how to best select patients who benefit from IO treatments, how to augment IO activity in programmed death receptor ligand-1–negative tumors, and how to incorporate IO in late-line settings or for recurrent disease that has been treated with IO-containing regimens during early stages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.