This paper provides a five-year performance evaluation of an application of geogrid reinforcement in low-volume unpaved roads using dynamic cone penetrometer (DCP), plate load tests (PLT), and roadway sensing method. A Forest Service unpaved road located in northern Arizona, USA, exhibited severe deterioration on the surface, creating an unsafe traffic environment for vehicles. A total of four structural sections (1–4; 4.3 m wide) were installed in the 40 m long test area. One additional section of existing subgrade/roadbed with native soil adjacent to the test sections was used for comparison purposes. The project was originally completed in November 2015, followed by five annual field visits to observe surface conditions of the five test sections. Based on DCP and PLT results (both conducted in 2015), and roadway sensing tests conducted in 2020, the section made of 30 cm thick aggregate with one geogrid layer appeared to have a better capacity for resisting traffic loading as compared with the other four sections. This paper concludes that, from a long-term point of view, the geogrid reinforcement improves the capacity of the unpaved roads, with significantly reduced rutting and damage from both roadway traffic loads and weathering effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.