Chemical recycling of plastics offers a green method to deal with plastic waste. In this review, we highlight the recent advances made by applying organocatalysts to chemically degrade polymers as a promising tool to reach a circular plastic economy.
Chemical recycling of plastic waste represents a greener alternative to landfill and incineration, and potentially offers a solution to the environmental consequences of increased plastic waste. Most plastics that are widely used today are designed for durability, hence currently available depolymerisation methods typically require harsh conditions and when applied to blended and mixed plastic feeds generate a mixture of products. Herein, we demonstrate that the energetic differences for the glycolysis of BPA‐PC and PET in the presence of a protic ionic salt TBD:MSA catalyst enables the selective and sequential depolymerisation of these two commonly employed polymers. Employing the same procedure, functionalised cyclic carbonates can be obtained from both mixed plastic wastes and industrial polymer blend. This methodology demonstrates that the concept of catalytic depolymerisation offers great potential for selective polymer recycling and also presents plastic waste as a “greener” alternative feedstock for the synthesis of high added value molecules.
Organocobalt(III) complexes (R-Co III ), defined as cobalt complexes featuring a carbon−cobalt bond, are largely used to produce carbon-centered radicals by homolytic cleavage of their C−Co bond under mild conditions. They are key compounds in cutting-edge developments in the fields of organic chemistry, biochemistry, medical research, radical reactions, and organometallic chemistry. This is the first Review of the use of R-Co III in both organic and polymer chemistries. Although pioneering works in organic synthesis have largely contributed to the implementation of R-Co III in polymer design, the two fields have evolved independently, with many breakthroughs on both sides. The main motivation of this Review is to confront both fields to stimulate cross-fertilization. It notably describes the most important synthetic pathways for R-Co III , the influence of the ligand structure and the environment of the complex on the C−Co bond strength, the modes of formation of the radicals, and the most relevant R-Co III -promoted radical reactions, with a focus on the main reaction mechanisms. CONTENTS 6.4. Polymerizations 6938 7. Conclusions 6945 Author Information 6946 Corresponding Author 6946 ORCID 6946 Notes 6946 Biographies 6946 Acknowledgments 6946 References 6946
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.