Estimating the pairwise similarity of protein−ligand binding sites is a fast and efficient way of predicting cross-reactivity and putative side effects of drug candidates. Among the many tools available, threedimensional (3D) alignment-dependent methods are usually slow and based on simplified representations of binding site atoms or surfaces. On the other hand, fast and efficient alignment-free methods have recently been described but suffer from a lack of interpretability. We herewith present a novel binding site description (VolSite), coupled to an alignment and comparison tool (Shaper) combining the speed of alignment-free methods with the interpretability of alignment-dependent approaches. It is based on the comparison of negative images of binding cavities encoding both shape and pharmacophoric properties at regularly spaced grid points. Shaper approximates the resulting molecular shape with a smooth Gaussian function and aligns protein binding sites by optimizing their volume overlap. Volsite and Shaper were successfully applied to compare protein− ligand binding sites and to predict their structural druggability.
We herewith present a novel and universal method to convert protein-ligand coordinates into a simple fingerprint of 210 integers registering the corresponding molecular interaction pattern. Each interaction (hydrophobic, aromatic, hydrogen bond, ionic bond, metal complexation) is detected on the fly and physically described by a pseudoatom centered either on the interacting ligand atom, the interacting protein atom, or the geometric center of both interacting atoms. Counting all possible triplets of interaction pseudoatoms within six distance ranges, and pruning the full integer vector to keep the most frequent triplets enables the definition of a simple (210 integers) and coordinate frame-invariant interaction pattern descriptor (TIFP) that can be applied to compare any pair of protein-ligand complexes. TIFP fingerprints have been calculated for ca. 10,000 druggable protein-ligand complexes therefore enabling a wide comparison of relationships between interaction pattern similarity and ligand or binding site pairwise similarity. We notably show that interaction pattern similarity strongly depends on binding site similarity. In addition to the TIFP fingerprint which registers intermolecular interactions between a ligand and its target protein, we developed two tools (Ishape, Grim) to align protein-ligand complexes from their interaction patterns. Ishape is based on the overlap of interaction pseudoatoms using a smooth Gaussian function, whereas Grim utilizes a standard clique detection algorithm to match interaction pattern graphs. Both tools are complementary and enable protein-ligand complex alignments capitalizing on both global and local pattern similarities. The new fingerprint and companion alignment tools have been successfully used in three scenarios: (i) interaction-biased alignment of protein-ligand complexes, (ii) postprocessing docking poses according to known interaction patterns for a particular target, and (iii) virtual screening for bioisosteric scaffolds sharing similar interaction patterns.
The sc-PDB database (available at http://bioinfo-pharma.u-strasbg.fr/scPDB/) is a comprehensive and up-to-date selection of ligandable binding sites of the Protein Data Bank. Sites are defined from complexes between a protein and a pharmacological ligand. The database provides the all-atom description of the protein, its ligand, their binding site and their binding mode. Currently, the sc-PDB archive registers 9283 binding sites from 3678 unique proteins and 5608 unique ligands. The sc-PDB database was publicly launched in 2004 with the aim of providing structure files suitable for computational approaches to drug design, such as docking. During the last 10 years we have improved and standardized the processes for (i) identifying binding sites, (ii) correcting structures, (iii) annotating protein function and ligand properties and (iv) characterizing their binding mode. This paper presents the latest enhancements in the database, specifically pertaining to the representation of molecular interaction and to the similarity between ligand/protein binding patterns. The new website puts emphasis in pictorial analysis of data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.