In this paper, we define and study a homology theory, that we call "natural homology", which associates a natural system of abelian groups to every space in a large class of directed spaces and precubical sets. We show that this homology theory enjoys many important properties, as an invariant for directed homotopy. Among its properties, we show that subdivided precubical sets have the same homology type as the original ones ; similarly, the natural homology of a precubical set is of the same type as the natural homology of its geometric realization. By same type we mean equivalent up to some form of bisimulation, that we define using the notion of open map. Last but not least, natural homology, for the class of spaces we consider, exhibits very important properties such as Hurewicz theorems, and most of Eilenberg-Steenrod axioms, in particular the dimension, homotopy, additivity and exactness axioms. This last axiom is studied in a general framework of (generalized) exact sequences.
Bisimulation and bisimilarity are fundamental notions in comparing state-based systems. Their extensions to a variety of systems have been actively pursued in recent years, a notable direction being quantitative extensions. In this paper we present an abstract categorical framework for such extended (bi)simulation notions. We use coalgebras as system models and fibrations for organizing predicatesfollowing the seminal work by Hermida and Jacobs-but our focus is on the structural aspect of fibrational frameworks. Specifically we use morphisms of fibrations as well as canonical liftings of functors via Kan extensions. We apply this categorical framework by deriving some known properties of the Hausdorff pseudometric and approximate bisimulation in control theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.