Somatosensation plays a critical role in the dexterous manipulation of objects, in emotional communication, and in the embodiment of our limbs. For upper-limb neuroprostheses to be adopted by prospective users, prosthetic limbs will thus need to provide sensory information about the position of the limb in space and about objects grasped in the hand. One approach to restoring touch and proprioception consists of electrically stimulating neurons in somatosensory cortex in the hopes of eliciting meaningful sensations to support the dexterous use of the hands, promote their embodiment, and perhaps even restore the affective dimension of touch. In this review, we discuss the importance of touch and proprioception in everyday life, then describe approaches to providing artificial somatosensory feedback through intracortical microstimulation (ICMS). We explore the importance of biomimicry – the elicitation of naturalistic patterns of neuronal activation – and that of adaptation – the brain’s ability to adapt to novel sensory input, and argue that both biomimicry and adaptation will play a critical role in the artificial restoration of somatosensation. We also propose that the documented re-organization that occurs after injury does not pose a significant obstacle to brain interfaces. While still at an early stage of development, sensory restoration is a critical step in transitioning upper-limb neuroprostheses from the laboratory to the clinic.
Lustig BR, Friedman RM, Winberry JE, Ebner FF, Roe AW. Voltage-sensitive dye imaging reveals shifting spatiotemporal spread of whiskerinduced activity in rat barrel cortex. J Neurophysiol 109: 2382-2392, 2013. First published February 6, 2013 doi:10.1152/jn.00430.2012.-In rats, navigating through an environment requires continuous information about objects near the head. Sensory information such as object location and surface texture are encoded by spike firing patterns of single neurons within rat barrel cortex. Although there are many studies using singleunit electrophysiology, much less is known regarding the spatiotemporal pattern of activity of populations of neurons in barrel cortex in response to whisker stimulation. To examine cortical response at the population level, we used voltage-sensitive dye (VSD) imaging to examine ensemble spatiotemporal dynamics of barrel cortex in response to stimulation of single or two adjacent whiskers in urethaneanesthetized rats. Single whisker stimulation produced a poststimulus fluorescence response peak within 12-16 ms in the barrel corresponding to the stimulated whisker (principal whisker). This fluorescence subsequently propagated throughout the barrel field, spreading anisotropically preferentially along a barrel row. After paired whisker stimulation, the VSD signal showed sublinear summation (less than the sum of 2 single whisker stimulations), consistent with previous electrophysiological and imaging studies. Surprisingly, we observed a spatial shift in the center of activation occurring over a 10-to 20-ms period with shift magnitudes of 1-2 barrels. This shift occurred predominantly in the posteromedial direction within the barrel field. Our data thus reveal previously unreported spatiotemporal patterns of barrel cortex activation. We suggest that this nontopographical shift is consistent with known functional and anatomic asymmetries in barrel cortex and that it may provide an important insight for understanding barrel field activation during whisking behavior. whisker function; optical imaging; somatosensory; barrel cortex; VSD IN RODENTS, THE TOPOGRAPHICAL single whisker-to-single cortical barrel relationship has long been recognized as a principle of cortical functional organization (Woolsey and Van der Loos 1970). Despite this clear one-to-one relationship, neurophysiological studies have revealed that principal whiskers are also modulated by subthreshold influences from distant sites (Brecht and
While the response properties of neurons in the somatosensory nerves and anterior parietal cortex have been extensively studied, little is known about the encoding of tactile and proprioceptive information in the cuneate nucleus (CN) or external cuneate nucleus (ECN), the first recipients of upper limb somatosensory afferent signals. The major challenge in characterizing neural coding in CN/ECN has been to record from these tiny, difficult-to-access brain stem structures. Most previous investigations of CN response properties have been carried out in decerebrate or anesthetized animals, thereby eliminating the well-documented top-down signals from cortex, which likely exert a strong influence on CN responses. Seeking to fill this gap in our understanding of somatosensory processing, we describe an approach to chronically implanting arrays of electrodes in the upper limb representation in the brain stem in primates. First, we describe the topography of CN/ECN in rhesus macaques, including its somatotopic organization and the layout of its submodalities (touch and proprioception). Second, we describe the design of electrode arrays and the implantation strategy to obtain stable recordings. Third, we show sample responses of CN/ECN neurons in brain stem obtained from awake, behaving monkeys. With this method, we are in a position to characterize, for the first time, somatosensory representations in CN and ECN of primates. In primates, the neural basis of touch and of our sense of limb posture and movements has been studied in the peripheral nerves and in somatosensory cortex, but coding in the cuneate and external cuneate nuclei, the first processing stage for these signals in the central nervous system, remains an enigma. We have developed a method to record from these nuclei, thereby paving the way to studying how sensory information from the limb is encoded there.
One approach to the study of disordered spatial attention is to carry out tests of extinction, in which stimuli are detected on the left when they are presented on the left alone, but not when both sides are stimulated simultaneously in a dual simultaneous stimulation (DSS) protocol. Extinction has been documented for multiple sensory modalities, but not for thermal pain stimuli, to our knowledge. We now test the hypothesis that subjects with visual spatial neglect (hemi-neglect) will have alterations in thermal pain sensation which are related to abnormal spatial attention. The results demonstrate that thermal pain extinction of hot and cold pain stimuli occurs in a proportion of subjects with hemi-neglect. In the subjects with visual spatial hemi-neglect but without thermal pain extinction, the sensation of the thermal pain stimulus on the affected (left) side was not extinguished but was often localized to the unaffected (right) side, and the submodality of the stimulus (cold or hot) was often misidentified. Ratios indicating the magnitude of extinction, mislocalization and misidentification were significantly larger on the left side of subjects with visual spatial neglect than in healthy controls or in controls with stroke but without hemineglect. The proportion of subjects with thermal pain extinction, mislocalization, or misidentification was significantly higher in subjects with hemi-neglect than those in either control group. These results demonstrate that disordered attention exerts a powerful effect upon the perception of both the location and the quality of thermal pain stimuli.
Kobayashi K, Winberry J, Liu CC, Treede RD, Lenz FA. A painful cutaneous laser stimulus evokes responses from single neurons in the human thalamic principal somatic sensory nucleus ventral caudal (Vc). J Neurophysiol 101: 2210 -2217, 2009. First published February 25, 2009 doi:10.1152/jn.91347.2008. Cutaneous application of painful radiant heat laser pulses evokes potentials (laserevoked potentials) that can be recorded from scalp or intracranial electrodes. We have now tested the hypothesis that the response of thalamic neurons to a cutaneous laser stimulus occurs at latencies predicted by the conduction delay between the periphery and the thalamus. We have carried out recordings from human thalamic neurons in the principal sensory nucleus (ventral caudal) in patients undergoing awake surgery for the treatment of tremor. The results demonstrate that many neurons respond to the laser with early and/or late latency peaks of activity, consistent with conduction of the response to the laser stimulus through pathways from A␦ and C fibers to the thalamus. These peaks were of short duration, perhaps due to the somatotopic-and modality-specific arrangements of afferent pathways to the thalamus. The responses of these thalamic neurons to the laser stimulus sometimes included low-threshold spike (LTS) bursts of action potentials, consistent with previous studies of different painful stimuli. A prior study has demonstrated that spike trains characterized by common LTS bursts such as the intermediate (I) category spontaneously change their category more commonly than do those without LTS bursts (NG: nongrouped category) during changes in the cognitive task. Spike trains of laser-responsive neurons were more common in the I category, whereas those of laser nonresponsive neurons were more common in the NG category. Therefore neuronal spike trains in the I category may mediate shifts in endogenous or cognitive pain-related behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.