Rationale: It is now well established that immune responses can take place outside of primary and secondary lymphoid organs. We previously described the presence of tertiary lymphoid structures (TLS) in patients with non-small cell lung cancer (NSCLC) characterized by clusters of mature dendritic cells (DCs) and T cells surrounded by B-cell follicles. We demonstrated that the density of these mature DCs was associated with favorable clinical outcome. Objectives: To study the role of follicular B cells in TLS and the potential link with a local humoral immune response in patients with NSCLC. Methods: The cellular composition of TLS was investigated by immunohistochemistry. Characterization of B-cell subsets was performed by flow cytometry. A retrospective study was conducted in two independent cohorts of patients. Antibody specificity was analyzed by ELISA. Measurements and Main Results: Consistent with TLS organization, all stages of B-cell differentiation were detectable in most tumors. Germinal center somatic hypermutation and class switch recombination machineries were activated, associated with the generation of plasma cells. Approximately half of the patients showed antibody reactivity against up to 7 out of the 33 tumor antigens tested. A high density of follicular B cells correlated with long-term survival, both in patients with early-stage NSCLC and with advanced-stage NSCLC treated with chemotherapy. The combination of follicular B cell and mature DC densities allowed the identification of patients with the best clinical outcome. Conclusions: B-cell density represents a new prognostic biomarker for NSCLC patient survival, and makes the link between TLS and a protective B cell-mediated immunity.
Tumor-infiltrating T cells, particularly CD45RO þ CD8þ memory T cells, confer a positive prognostic value in human cancers. However, the mechanisms that promote a protective T-cell response in the tumor microenvironment remain unclear. In chronic inflammatory settings such as the tumor microenvironment, lymphoid neogenesis can occur to create local lymph node-like structures known as tertiary lymphoid structures (TLS). These structures can exacerbate a local immune response, such that TLS formation in tumors may help promote an efficacious immune contexture. However, the role of TLS in tumors has yet to be investigated carefully. In lung tumors, mature dendritic cells (DC) present in tumor-associated TLS can provide a specific marker of these structures. In this study, we evaluated the influence of TLS on the characteristics of the immune infiltrate in cohorts of prospective and retrospective human primary lung tumors (n ¼ 458). We found that a high density of mature DC correlated closely to a strong infiltration of T cells that are predominantly of the effector-memory phenotype. Moreover, mature DC density correlated with expression of genes related to T-cell activation, T-helper 1 (Th1) phenotype, and cytotoxic orientation. Lastly, a high density of TLS-associated DC correlated with long-term survival, which also allowed a distinction of patients with high CD8 þ T-cell infiltration but a high risk of death. Taken together, our results show how tumors infiltrated by TLS-associated mature DC generate a specific immune contexture characterized by a strong Th1 and cytotoxic orientation that confers the lowest risk of death. Furthermore, our findings highlight the pivotal function of TLS in shaping the immune character of the tumor microenvironment, in promoting a protective immune response mediated by T cells against cancer. Cancer Res; 74(3); 705-15. Ó2013 AACR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.