A B S T R A C T Microwave radiances from the humidity sounder SAPHIR at 183 GHz onboard the MEGHA-TROPIQUES satellite are simulated in cloudy and rainy conditions (all-sky radiances) using short-range forecasts from the operational limited area model ALADIN-Re´union over the Indian Ocean. The simulation of SAPHIR radiances uses cloud and precipitation profiles from the moist physical parameterizations of ALADINRe´union describing deep convection and large-scale precipitation, that are coupled to the fast radiative transfer model RTTOV-SCATT accounting for scattering by hydrometeors. Sensitivity studies show that within cloud systems the SAPHIR sounder is particularly sensitive to solid precipitating hydrometeors. An optimal choice of scattering properties for snow particles is undertaken by a systematic comparison of simulated and observed SAPHIR radiances over a 1-month period in February 2012. This choice has required defining a criterion for rain occurrence from SAPHIR radiances that has been calibrated with the TMPA 3B40RT surface precipitation rate product. Finally, a retrieval technique based on Bayesian inversion is proposed to derive atmospheric profiles within clouds to be assimilated in the ALADIN 3D-Var system in a forthcoming study. The retrieved profiles are evaluated through the simulation of radiances from the microwave imager MADRAS that also flew on MEGHA-TROPIQUES.
Abstract. The role of an active phase of the Madden–Julian Oscillation (MJO) on the evolution of a mesoscale convective systems (MCS) leading to a tropical depression is investigated in the South-West Indian Ocean during the Dynamics of the Madden–Julian Oscillation (DYNAMO) field experiment, with a numerical limited-area atmospheric model. A mesoscale vortex is followed in the low-troposphere from the initiation of the active MJO phase. It is shown that the interaction of the vortex with the Equatorial jet associated with the MJO plays an important role on the vortex development. As the vortex encounters the southern part of the low-level jet, it undergoes intensification that is explained by the barotropic conversion of kinetic energy from the low-level jet to the vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.