The mountain chain of the Sierra Madre de Chiapas in southern Mexico is globally significant for its biodiversity and is one of the most important coffee production areas of Mexico. It provides water for several municipalities and its biosphere reserves are important tourist attractions. Much of the forest cover outside the core protected areas is in fact coffee grown under traditional forest shade. Unless this (agro)forest cover can be sustained, the biodiversity of the Sierra Madre and the environmental services it provides are at risk. We analyzed the threats to livelihoods and environment from climate change through crop suitability modeling based on downscaled climate scenarios for the period 2040 to 2069 (referred to as 2050s) and developed adaptation options through an expert workshop. Significant areas of forest and occasionally coffee are destroyed every year by wildfires, and this problem is bound to increase in a hotter and drier future climate. Widespread landslides and inundations, including on coffee farms, have recently been caused by hurricanes whose intensity is predicted to increase. A hotter climate with more irregular rainfall will be less favorable to the production of quality coffee and lower profitability may compel farmers to abandon shade coffee and expand other land uses of less biodiversity value, probably at the expense of forest. A comprehensive strategy to sustain the biodiversity, ecosystem services and livelihoods of the Sierra Madre in the face of climate change should include the promotion of biodiversity friendly coffee growing and processing practices including complex shade which can offer some hurricane protection and product diversification; payments for forest conservation and restoration from existing government programs complemented by private initiatives; diversification of income sources to mitigate risks associated with unstable environmental conditions and coffee markets; integrated fire management; development of markets that reward sustainable land use practices and forest conservation; crop insurance programs that are accessible to smallholders; and the strengthening of local capacity for adaptive resource management.Response to Reviewers: Major revisions of the paper have been made following the guidance provided by the reviewer: 1)The paper has been shortened through elimination of some non-essential detail, especially in the introduction and the discussion of the adaptation options.2)The methods section has been expanded through a more detailed explanation of the public participation process and of the analytical process. Substantial statistical analysis of the variability among different Global Circulation Models has been added. We now present confidence intervals of 15 GCMs in the maps of predicted future coffee suitability and also a map showing the agreement among models in Figure 3. We also show the prediction of coffee suitability by altitude for individual models, in addition to mean and confidence intervals. Error bars have also been added to ...
The Mesoamerican region is considered to be one of the areas in the world most vulnerable to climate change. We developed a framework for quantifying the vulnerability of the livelihoods of coffee growers in Mesoamerica at regional and local levels and identify adaptation strategies. Following the Intergovernmental Panel on Climate Change (IPCC) concepts, vulnerability was defined as the combination of exposure, sensitivity and adaptive capacity. To quantify exposure, changes in the climatic suitability for coffee and other crops were predicted through niche modelling based on historical climate data and locations of coffee growing areas from Mexico, Guatemala, El Salvador and Nicaragua. Future climate projections were generated from 19 Global Circulation Models. Focus groups were used to identify nine indicators of sensitivity and eleven indicators of adaptive capacity, which were evaluated through semi-structured interviews with 558 coffee producers. Exposure, sensitivity and adaptive capacity were then condensed into an index of vulnerability, and adaptation strategies were identified in participatory workshops. Models predict that all target countries will experience a decrease in climatic suitability for growing Arabica coffee, with highest suitability loss for El Salvador and lowest loss for Mexico. High vulnerability resulted from loss in climatic suitability for coffee production and high sensitivity through variability of yields and out-migration of the work force. This was combined with low adaptation capacity as evidenced by poor post harvest infrastructure and in some cases poor access to credit and low levels of social organization. Nevertheless, the specific contributors to vulnerability varied strongly among countries, municipalities and families making general trends difficult to identify. Flexible strategies for adaption are therefore needed. Families need the support of government and institutions specialized in impacts of climate change and strengthening of farmer organizations to enable the adjustment of adaptation strategies to local needs and conditions.
Changes in coffee economics are leading producers to reduce agrochemical use and increase the use of shade. Research is needed on how to balance the competition from shade trees with the provision of ecological services to the coffee. In 2000, long-term coffee experiments were established in Costa Rica and Nicaragua to compare coffee agroecosystem performance under full sun, legume and non-legume shade types, and intensive and moderate conventional and organic inputs. Coffee yield from intensive organic production was not significantly different from intensive conventional in Nicaragua, but in Costa Rica it was lower during three of the six harvests. Full sun coffee production over 6 years was greater than shaded coffee in Costa Rica (61.8 vs. 44.7 t ha -1 , P = 0.0002). In Nicaragua, full sun coffee production over 5 years (32.1 t ha -1 ) was equal to coffee with shade that included Tabebuia rosea (Bertol.) DC., (27-30 t ha -1 ) and both were more productive (P = 0.03) than coffee shaded with Inga laurina (Sw.) Willd. (21.6 t ha -1 ). Moderate input organic production was significantly lower than other managements under all shade types, except in the presence of Erythrina poepiggina (Walp.) O.F. Cook. Inga and Erythrina had greater basal area and nutrient recycling from prunings than other shade species. Intensive organic production increased soil pH and P, and had higher K compared to moderate conventional. Although legume shade trees potentially provide ecological services to associated coffee, this depends on management of the competition from those same trees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.