The identification of low-energy chlorophyll pigments in photosystem II (PSII) is critical to our understanding of the kinetics and mechanism of this important enzyme. We report parallel circular dichroism (CD) and circularly polarized luminescence (CPL) measurements at liquid helium temperatures of the proximal antenna protein CP47. This assembly hosts the lowest-energy chlorophylls in PSII, responsible for the well-known "F695" fluorescence band of thylakoids and PSII core complexes. Our new spectra enable a clear identification of the lowest-energy exciton state of CP47. This state exhibits a small but measurable excitonic delocalization, as predicated by its CD and CPL. Using structure-based simulations incorporating the new spectra, we propose a revised set of site energies for the 16 chlorophylls of CP47. The significant difference from previous analyses is that the lowest-energy pigment is assigned as Chl 612 (alternately numbered Chl 11). The new assignment is readily reconciled with the large number of experimental observations in the literature, while the most common previous assignment for the lowest energy pigment, Chl 627(29), is shown to be inconsistent with CD and CPL results. Chl 612(11) is near the peripheral light-harvesting system in higher plants, in a lumen-exposed region of the thylakoid membrane. The low-energy pigment is also near a recently proposed binding site of the PsbS protein. This result consequently has significant implications for our understanding of the kinetics and regulation of energy transfer in PSII.
The synthesis, characterisation, and TiO2 binding studies of a series of chromophoric complexes of 5-(4-carboxyphenyl)-4,6-dipyrrin (L(b)) are presented. The synthesis of [Ru(bipy)(L(b))2] (bipy = 2,2-bipyridine), [Rh(L(b))3], and [Pd(L(b))2] was achieved by initial coordination of 5-(4-methoxycarbonylphenyl)-4,6-dipyrrin (L(a)) followed by hydrolysis of the ester group. The carboxyl groups that are located on the peripheries of these complexes are able to engage in intermolecular hydrogen bonding interactions in the solid state, as revealed by X-ray crystallography. These groups also allow the complexes to anchor to the surface of TiO2 nanoparticles, as evidenced by colouration of the TiO2 and FT-IR spectroscopy. The ability of these complexes to capture a significant fraction of sunlight and to adhere to TiO2 surfaces renders them viable dyes for photochemical devices such as dye sensitised solar cells.
Circularly polarized luminescence (CPL) spectroscopy is an established but relatively little-used technique that monitors the chirality of an emission. When applied to photosynthetic pigment assemblies, we find that CPL provides sensitive and detailed information on low-energy exciton states, reflecting the interactions, site energies and geometries of interacting pigments. CPL is the emission analog of circular dichroism (CD) and thus spectra explore the optical activity only of fluorescent states of the pigment-protein complex and consequently the nature of the lowest-energy excited states (trap states), whose study is a critical area of photosynthesis research. In this work, we develop the new approach of temperature-dependent CPL spectroscopy, over the 2-120 K temperature range, and apply it to the CP43 proximal antenna protein of photosystem II. Our results confirm strong excitonic interactions for at least one of the two well-established emitting states of CP43 named "A" and "B". Previous structure-based models of CP43 spectra are evaluated in the light of the new CPL data. Our analysis supports the assignments of Shibata et al. [Shibata et al. J. Am. Chem. Soc. 135 (2013) 6903-6914], particularly for the highly-delocalized B-state. This state dominates CPL spectra and is attributed predominantly to chlorophyll a's labeled Chl 634 and Chl 636 (alternatively labeled Chl 43 and 45 by Shibata et al.). The absence of any CPL intensity in intramolecular vibrational sidebands associated with the delocalized "B" excited state is attributed to the dynamic localization of intramolecular vibronic transitions.
Chemical energy storage by water splitting is a promising solution for the utilization of renewable energy in numerous currently impracticable needs, such as transportation and high temperature processing. Here, the synthesis of efficient ultra-fine Mn3O4 water oxidation catalysts with tunable specific surface area is demonstrated by a scalable one-step flame-synthesis process. The water oxidation performance of these flame-made structures is compared with pure Mn2O3 and Mn5O8, obtained by post-calcination of as-prepared Mn3O4 (115 m(2) g(-1)), and commercial iso-structural polymorphs, probing the effect of the manganese oxidation state and synthetic route. The structural properties of the manganese oxide nanoparticles were investigated by XRD, FTIR, high-resolution TEM, and XPS. It is found that these flame-made nanostructures have substantially higher activity, reaching up to 350 % higher surface-specific turnover frequency (0.07 μmolO2 m(-2) s(-1)) than commercial nanocrystals (0.02 μmolO2 m(-2) s(-1)), and production of up to 0.33 mmolO2 molMn (-1) s(-1). Electrochemical characterization confirmed the high water oxidation activity of these catalysts with an initial current density of 10 mA cm(-2) achieved with overpotentials between 0.35 and 0.50 V in 1 m NaOH electrolyte.
Co(2+)-doped CdSe colloidal nanowires with tunable size and dopant concentration have been prepared by a solution-liquid-solid (SLS) approach for the first time. These doped nanowires exhibit anomalous photoluminescence temperature dependence in comparison with undoped nanowires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.