This article proposes codes for the primary tumor categories of adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) and a uniform way to measure tumor size in part-solid tumors for the eighth edition of the tumor, node, and metastasis classification of lung cancer. In 2011, new entities of AIS, MIA, and lepidic predominant adenocarcinoma were defined, and they were later incorporated into the 2015 World Health Organization classification of lung cancer. To fit these entities into the T component of the staging system, the Tis category is proposed for AIS, with Tis (AIS) specified if it is to be distinguished from squamous cell carcinoma in situ (SCIS), which is to be designated Tis (SCIS). We also propose that MIA be classified as T1mi. Furthermore, the use of the invasive size for T descriptor size follows a recommendation made in three editions of the Union for International Cancer Control tumor, node, and metastasis supplement since 2003. For tumor size, the greatest dimension should be reported both clinically and pathologically. In nonmucinous lung adenocarcinomas, the computed tomography (CT) findings of ground glass versus solid opacities tend to correspond respectively to lepidic versus invasive patterns seen pathologically. However, this correlation is not absolute; so when CT features suggest nonmucinous AIS, MIA, and lepidic predominant adenocarcinoma, the suspected diagnosis and clinical staging should be regarded as a preliminary assessment that is subject to revision after pathologic evaluation of resected specimens. The ability to predict invasive versus noninvasive size on the basis of solid versus ground glass components is not applicable to mucinous AIS, MIA, or invasive mucinous adenocarcinomas because they generally show solid nodules or consolidation on CT.
Measurements of lung tumor size on CT scans are often inconsistent and can lead to an incorrect interpretation of tumor response. Consistency can be improved if the same reader performs serial measurements for any one patient.
Pulmonary drug toxicity is increasingly being diagnosed as a cause of acute and chronic lung disease. Numerous agents including cytotoxic and noncytotoxic drugs have the potential to cause pulmonary toxicity. The clinical and radiologic manifestations of these drugs generally reflect the underlying histopathologic processes and include diffuse alveolar damage (DAD), nonspecific interstitial pneumonia (NSIP), bronchiolitis obliterans organizing pneumonia (BOOP), eosinophilic pneumonia, obliterative bronchiolitis, pulmonary hemorrhage, edema, hypertension, or veno-occlusive disease. DAD is a common manifestation of pulmonary drug toxicity and is frequently caused by cytotoxic drugs, especially cyclophosphamide, bleomycin, and carmustine. It manifests radiographically as bilateral hetero- or homogeneous opacities usually in the mid and lower lungs and on high-resolution computed tomographic (CT) scans as scattered or diffuse areas of ground-glass opacity. NSIP occurs most commonly as a manifestation of carmustine toxicity or of toxicity from noncytotoxic drugs such as amidarone. At radiography, it appears as diffuse areas of heterogeneous opacity, whereas early CT scans show diffuse ground-glass opacity and late CT scans show fibrosis in a basal distribution. BOOP, which is commonly caused by bleomycin and cyclophosphamide (as well as gold salts and methotrexate), appears on radiographs as hetero- and homogeneous peripheral opacities in both upper and lower lobes and on CT scans as poorly defined nodular consolidation, centrilobular nodules, and bronchial dilatation. Knowledge of these manifestations and of the drugs most frequently involved can facilitate diagnosis and institution of appropriate treatment.
The solitary pulmonary nodule is a common radiologic abnormality that is often detected incidentally. Although most solitary pulmonary nodules have benign causes, many represent stage I lung cancers and must be distinguished from benign nodules in an expeditious and cost-effective manner. Evaluation of specific morphologic features of a solitary pulmonary nodule with conventional imaging techniques can help differentiate benign from malignant nodules and obviate further costly assessment. Small size and smooth, well-defined margins are suggestive of but not diagnostic for benignity. Lobulated contour as well as an irregular or spiculated margin with distortion of adjacent vessels are typically associated with malignancy. There is considerable overlap in the internal characteristics (eg, attenuation, cavitation, wall thickness) of benign and malignant nodules. The presence of intranodular fat is a reliable indicator of a hamartoma. The presence and pattern of calcification can also help differentiate benign from malignant nodules. Computed tomography (CT) (particularly thin-section CT) is 10-20 times more sensitive than standard radiography and allows objective, quantitative assessment of calcification. Initial evaluation often results in nonspecific findings, in which case nodules are classified as indeterminate and require further evaluation to exclude malignancy. Growth rate assessment, Bayesian analysis, contrast material-enhanced CT, positron emission tomography, and transthoracic needle aspiration biopsy can be useful in this regard.
Currently, there is no established guidance on how to process and evaluate resected lung cancer specimens after neoadjuvant therapy in the setting of clinical trials and clinical practice. There is also a lack of precise definitions on the degree of pathologic response, including major pathologic response or complete pathologic response. For other cancers such as osteosarcoma and colorectal, breast, and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.