Producing written words requires “central” cognitive processes (such as orthographic long-term and working memory) as well as more peripheral processes responsible for generating the motor actions needed for producing written words in a variety of formats (handwriting, typing, etc.). In recent years, various functional neuroimaging studies have examined the neural substrates underlying the central and peripheral processes of written word production. This study provides the first quantitative meta-analysis of these studies by applying activation likelihood estimation (ALE) methods (Turkeltaub et al., 2002). For alphabet languages, we identified 11 studies (with a total of 17 experimental contrasts) that had been designed to isolate central and/or peripheral processes of word spelling (total number of participants = 146). Three ALE meta-analyses were carried out. One involved the complete set of 17 contrasts; two others were applied to subsets of contrasts to distinguish the neural substrates of central from peripheral processes. These analyses identified a network of brain regions reliably associated with the central and peripheral processes of word spelling. Among the many significant results, is the finding that the regions with the greatest correspondence across studies were in the left inferior temporal/fusiform gyri and left inferior frontal gyrus. Furthermore, although the angular gyrus (AG) has traditionally been identified as a key site within the written word production network, none of the meta-analyses found it to be a consistent site of activation, identifying instead a region just superior/medial to the left AG in the left posterior intraparietal sulcus. These meta-analyses and the discussion of results provide a valuable foundation upon which future studies that examine the neural basis of written word production can build.
In this study we employed a novel technique to examine the neural basis of written spelling by having subjects touch-type single words on an fMRI compatible QWERTY keyboard. Additionally, in the same group of participants we determined if task-related signal changes associated with typed spelling were also co-localized with or separate from those for reading. Of particular interest were the left inferior frontal gyrus, left inferior parietal lobe as well as an area in the left occipitotemporal cortex termed the Visual Word Form Area (VWFA), each of which have been associated with both spelling and reading. Our results revealed that typed spelling was associated with a left hemisphere network of regions which included the inferior frontal gyrus, intraparietal sulcus, inferior temporal/fusiform gyrus, as well as a region in the superior/middle frontal gyrus, near Exner's area. A conjunction analysis of activation associated with spelling and reading revealed a significant overlap in the left inferior frontal gyrus and occipitotemporal cortex. Interestingly, within the occipitotemporal cortex just lateral and superior to the VWFA we identified an area that was selectively associated with spelling, as revealed by a direct comparison of the two tasks. These results demonstrate that typed spelling activates a predominantly left hemisphere network, a subset of which is functionally relevant to both spelling and reading. Further analysis revealed that the left occipitotemporal cortex contains regions with both conjoint and dissociable patterns of activation for spelling and reading.
Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills.
A central question in the study of the neural basis of written language is whether reading and spelling utilize shared orthographic representations. While recent studies employing fMRI to test this question report that the left inferior frontal gyrus (IFG) and ventral occipitotemporal cortex (vOTC) are active during both spelling and reading in the same subjects (Purcell et al., 2011a; Rapp and Lipka, 2011), the spatial resolution of fMRI limits the interpretation of these findings. Specifically, it is unknown if the neurons which encode orthography for reading are also involved in spelling of the same words. Here we address this question by employing an event-related functional magnetic resonance imaging-adaptation (fMRI-A) paradigm designed to examine shared orthographic representations across spelling and reading. First, we identified areas that independently showed adaptation to reading, and adaptation to spelling. Then we identified spatial convergence for these two separate maps via a conjunction analysis. Consistent with previous studies (Purcell et al., 2011a; Rapp and Lipka, 2011), this analysis revealed the left dorsal IFG, vOTC and supplementary motor area. To further validate these observations, we then interrogated these regions using an across-task adaptation technique, and found adaptation across reading and spelling in the left dorsal IFG (BA 44/9). Our final analysis focused specifically on the Visual Word Form Area (VWFA) in the vOTC, whose variability in location among subjects requires the use of subject-specific identification mechanisms (Glezer and Riesenhuber, 2013). Using a functional localizer for reading, we defined the VWFA in each subject, and found adaptation effects for both within the spelling and reading conditions, respectively, as well as across spelling and reading. Because none of these effects were observed during a phonological/semantic control condition, we conclude that the left dorsal IFG and VWFA are involved in accessing the same orthography-specific representations for spelling and reading.
Purpose: The neural mechanisms that support aphasia recovery are not yet fully understood. Our goal was to evaluate longitudinal changes in naming recovery in participants with posterior cerebral artery (PCA) stroke using a case-by-case analysis.Methods: Using task based and resting state functional magnetic resonance imaging (fMRI) and detailed language testing, we longitudinally studied the recovery of the naming network in four participants with PCA stroke with naming deficits at the acute (0 week), sub acute (3–5 weeks), and chronic time point (5–7 months) post stroke. Behavioral and imaging analyses (task related and resting state functional connectivity) were carried out to elucidate longitudinal changes in naming recovery.Results: Behavioral and imaging analysis revealed that an improvement in naming accuracy from the acute to the chronic stage was reflected by increased connectivity within and between left and right hemisphere “language” regions. One participant who had persistent moderate naming deficit showed weak and decreasing connectivity longitudinally within and between left and right hemisphere language regions.Conclusions: These findings emphasize a network view of aphasia recovery, and show that the degree of inter- and intra- hemispheric balance between the language-specific regions is necessary for optimal recovery of naming, at least in participants with PCA stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.