Assembly of the HIV and other retroviruses is primarily driven by the oligomerization of the Gag polyprotein, the major viral structural protein capable of forming virus-like particles even in the absence of all other virally encoded components. Several critical determinants of Gag oligomerization are located in the C-terminal domain of the capsid protein (CA-CTD), which encompasses the most conserved segment in the highly variable Gag protein called the major homology region (MHR). The CA-CTD is thought to function as a dimerization module, although the existing model of CA-CTD dimerization does not readily explain why the conserved residues of the MHR are essential for retroviral assembly. Here we describe an x-ray structure of a distinct domain-swapped variant of the HIV-1 CA-CTD dimer stabilized by a single amino acid deletion. In the domain-swapped structure, the MHR-containing segment forms a major part of the dimerization interface, providing a structural mechanism for the enigmatic function of the MHR in HIV assembly. Our observations suggest that swapping of the MHR segments of adjacent Gag molecules may be a critical intermediate in retroviral assembly.Gag ͉ major homology region ͉ viral assembly
Class I WW domains contain a highly conserved set of residues that are important in selecting Pro-Xxx-Tyr containing peptide ligands. The presence of these residues within an uncharacterized WW domain can be used to predict its ability to bind Pro-Xxx-Tyr containing peptide ligands.
Once the sequence of a genome is in hand, understanding the function of its encoded proteins becomes a task of paramount importance. Much like the biochemists who first outlined different biochemical pathways, many genomic scientists are engaged in determining which proteins interact with which proteins, thereby establishing a protein interaction network. While these interactions have evolved in regard to their specificity, affinity and cellular function over billions of years, it is possible in the laboratory to isolate peptides from combinatorial libraries that bind to the same proteins with similar specificity, affinity and primary structures, which resemble those of the natural interacting proteins. We have termed this phenomenon`convergent evolution'. In this review, we highlight various examples of convergent evolution that have been uncovered in experiments dissecting protein^protein interactions with combinatorial peptides. Thus, a fruitful approach for mapping protein^protein interactions is to isolate peptide ligands to a target protein and identify candidate interacting proteins in a sequenced genome by computer analysis. ß
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.