Vehicle parameters have a significant impact on handling, stability, and rollover propensity. This study demonstrates two methods that estimate the inertia values of a ground vehicle in real-time.Through the use of the Generalized Polynomial Chaos (gPC) technique for propagating the uncertainties, the uncertain vehicle model outputs a probability density function for each of the variables. These probability density functions (PDFs) can be used to estimate the values of the parameters through several statistical methods. The method used here is the Maximum A-Posteriori (MAP) estimate. The MAP estimate maximizes the distribution of P(β |z) where β is the vector of the PDFs of the parameters and z is the measurable sensor comparison.An alternative method is the application of an adaptive filtering method. The Kalman Filter is an example of an adaptive filter. This method, when blended with the gPC theory is capable at each time step of updating the PDFs of the parameter distributions. These PDF's have their median values shifted by the filter to approximate the actual values.
Shape memory alloys (SMAs) are capable linear actuators. This research demonstrates the capabilities of SMA wires for the control of a pivot actuator. The wires impart opposing forces to control the motion of the pivot, and their deformation lengths are used to control the angle of rotation. The performance of the actuator is demonstrated through the tracking of a trajectory. Several effects that are important to the behavior of the actuator are also investigated. These are the block force generation of SMA wires for various temperatures and cooling strategies, and the open-loop response of the system.
Ride control of military vehicles is challenging due to varied terrain and mission requirements such as operating weight. Achieving top speeds on rough terrain is typically considered a key performance parameter, which is always constrained by ride discomfort. Many military vehicles using passive suspensions suffer with compromised performance due to single tuning solution. To further stretch the performance domain to achieving higher speeds on rough roads, semiactive suspensions may offer a wide range of damping possibilities under varying conditions. In this paper, various semi-active control strategies are examined, and improvements have been made, particularly, to the acceleration-driven damper (ADD) strategy to make the approach more robust for varying operating conditions. A seven degrees of freedom ride model and a quarter-car model were developed that were excited by a random road process input modeled using an auto-regressive time series model. The proposed strategy shows promise as a cost-effective solution to improve the ride of a military vehicle over multiple stochastic terrains considering variation in operating weight.
The generalized polynomial chaos (gPC) mathematical technique, when integrated with the extended Kalman filter (EKF) method, provides a parameter estimation and state tracking method. The truncation of the series expansions degrades the link between parameter convergence and parameter uncertainty which the filter uses to perform the estimations. An empirically derived correction for this problem is implemented, which maintains the original parameter distributions. A comparison is performed to illustrate the improvements of the proposed approach. The method is demonstrated for parameter estimation on a regression system, where it is compared to the recursive least squares (RLS) method.
The generalized polynomial chaos (gPC) method for propagating uncertain parameters through dynamical systems (previously developed at Virginia Tech) has been shown to be very computationally efficient. This method seems also to be ideal for real-time parameter estimation when merged with the Extended Kalman Filter (EKF). The resulting technique is shown in the present paper for systems in state-space representations, and then expanded to systems in regressions formulations. Due to the way the filter interacts with the polynomial chaos expansions, the covariance matrix is forced to zero in finite time. This problem shows itself as an inability to perform state estimations and causes the parameters to converge to incorrect values for state space systems. In order to address this issue, improvements to the method are implemented and the updated method is applied to both state space and regression systems. The resultant technique shows high accuracy of both state and parameter estimations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.